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Executive Summary 

Unmanned Aerial Vehicles (UAVs), also known as drones, are increasingly being marketed to farmers 

and crop consultants as a must have new tool. The promise is that knowledge gained by looking at fields 

from a bird’s eye perspective will enable farmers to better understand yield limiting factors and to take 

corrective measures where needed. We designed this study with the objectives to examine the value of 

aerial images captured from a UAV for the purpose of scouting for weeds and diseases in a variety of 

crops.  For each of six crops at two locations, a set of three images (early mid and late season) were 

taken at 180 m above ground level at a resolution that  covered a 6 cm by 6 cm area on the ground for 

each pixel in the image.  This is considered high resolution aerial imagery.  However, for the purpose of 

early season weed scouting we found that this resolution is too coarse to detect the presence of small 

weeds, which is critical for optimal weed control recommendations.  Further testing on much higher 

resolution images showed that weed density information could be extracted by locating and removing 

crop rows from the images and then calculating weed density from pixels covering vegetation in the 

remaining inter-row space. This suggested that it should be possible to use current UAV technology to 

generate weed density maps without the need to first produce extremely high resolution images of 

entire fields.  Nevertheless the 6 cm per pixel resolution was more than adequate to locate patches that 

could potentially be associated with disease.  We were able to readily detect areas of missing or 

senescent plants that were less than one square meter in size.  Such areas could be identified visually or 

by the use of segmentation algorithms, but the latter was much more effective in situations where 

numerous small patches were present throughout the crop canopy.  In these cases the algorithm was 

able to quickly identify thousands of such areas and eliminate the ones that did not meet the specified 

criteria. Our results support the use of UAV acquired aerial imagery as a new tool to assist with the 

detection of diseases, especially during the early stages of an infestation. The cost of adding UAV aerial 

images to a field scouting program is however quite significant.  If entirely contracted it could increase 

crop scouting costs from $4.00 per acre to $40.00 per acre with images taken 12 times during the 

season. On the other hand if the UAV is farm owned and operated the cost could be much lower, which 

we estimated at $11.50 per acre. This is primarily because there would be no expectation of profit on 

the UAV operation as such.   
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Introduction 
Unmanned Aerial Vehicles (UAVs), also known as drones, are 

increasingly being marketed to farmers and crop consultants 

as a must have new tool. The promise is that knowledge 

gained by looking at fields from a bird’s eye perspective, or 

by examining composite images of entire fields, will enable 

farmers to better understand yield limiting factors and to 

take corrective measures where needed.  The numerous 

promotional videos targeted at farmers make it seem quick 

and easy to capture images and generate field maps, which 

will reveal areas in need of attention that would otherwise 

be missed.  However, a close look at the technology will 

show that there are numerous elements that have to work 

together to produce a field map from a series of images that 

individually cover only a small portion of a field.  

Perhaps the first thing is the aircraft itself.  It must have the 

capacity to fly the number of paths required to cover an 

entire field, typically a quarter section, and maintain its 

course even under windy conditions. The altitude must be 

within the limits allowed by Transport Canada and still 

produce the required overlap between images.  The camera 

has to be triggered at the right time even when travel speed 

may vary as a result of head or tail winds.   UAVs currently 

marketed for agriculture come in fixed wing or multirotor 

designs.  Fixed wings are better at covering larger areas, such as a quarter section, or in some cases an 

entire section, whereas multirotors (quadcopters, hexacopters, etc.) are more suitable for small areas 

and for close up inspections (Fig. 1).   

The core piece of technology is without doubt the flight control system.  This is what allows the UAV to 

navigate as programmed, record its position and other flight parameters, as well as to activate the 

camera or other sensors according to programmed instructions.  Autopilots navigate by responding to 

signals from an onboard GNSS receiver (GPS and/or GLONASS satellites), an inertial navigation system 

(essentially an accelerometer combined with a gyroscope) and other sensors (altimeter, airflow, etc).  

Advances in computer technology have increased the accuracy, reduced the size, weight and power 

consumption, as well as the cost of these systems.   

Another critical element is the camera. Many models still use off the shelf point and shoot or action 

cameras, often modified to capture the near infrared portion on the red band of the digital sensor.  Such 

cameras are of course not optimized for this use and may result in quality and consistency problems 

with the images.  If the camera is not mounted on a gimbal to keep the plane of the sensor parallel to 

the ground significant distortions may occur especially when subject to lateral wind.  In some models 

the camera may not be adequately protected during landing, resulting in a short lifespan or frequent 

repairs. Increasingly however, manufacturers offer cameras specifically designed for UAVs.  There are 

now several options for light weight and relatively low cost multispectral cameras, thermal infrared 

Figure 1. Multirotor and fixed wing UAVs of the 

type commonly used in agriculture. 
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cameras, and even compact LIDAR units.  In many 

cases these cameras are now mounted inside the 

fuselage and protected from dust and debris, which is 

often a problem with small fixed wing UAVs during 

landing.  

Once airborne the UAV communicates with the 

operator through a radio, known as the ground 

telemetry module (GTM).  This allows to display the 

position of the UAV on the flight plan, to show flight 

parameters, such as altitude, speed and battery 

status, as well as to stream video and other 

information related to payload sensors. When 

necessary, the operator has the option to switch to 

manual flight control using the remote control radio 

unit (Fig. 2 and 3).  In some cases the GTM and the 

remote control radio are integrated into one unit.  

This setup often relies on a tablet computer or 

smartphone to provide processing power to display 

digital video and to handle other computational tasks 

associated with the flight planning software.  

The introduction of visual flight planning software 

that allows the user to specify waypoints by clicking 

on a map has greatly simplified the flight planning 

process. No longer is it necessary to enter 

coordinates for waypoints or to calculate the 

distances between paths to achieve sufficient overlap.  What previously might have taken hours of 

preparation can now be achieved in minutes.  In many cases the flight plan can be overlaid onto a 

variety of base maps, including satellite imagery, which often makes it easier to find reference points 

and to locate good areas for field set-up.  The software may also include features for calibration of the 

camera and other sensor as well as to carry out 

pre-flight checks.  

Once the information has been collected it needs 

to be processed.  Typically the task consists in 

creating a single image of the entire target area by 

combining the set of overlapping images, which is 

referred to as mosaicking. Finally the mosaicked 

image has to be adjusted to remove any 

distortions and geographic coordinates have to be 

assigned. The result is an orthoimage that has a 

consistent scale in all areas and can readily be 

placed on a map within a geographic information 

system.  Depending on the number and size of the 

image files involved, this can be very 

Figure 2. A ground telemetry module (GTM) connected 

to a laptop with a screen shade.  The laptop runs the 

flight planning software and displays the position, 

altitude, speed, battery status and other information 

relevant to the operation of the UAV.   

Figure 3. UAV operated via manual controls using a 2.4 GHz 

Spectrum DX7 controller. 
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computationally intensive task that relies on specialized software.  The resulting image can then be 

further analyzed, for example to generate a normalized difference vegetation index (NDVI).  The 

orthoimage can also be subjected to a number of analytical methods to characterize and extract 

patterns.  In order to efficiently analyze spatial information it is necessary to organize the images and 

files derived from them, into a geographic information system (GIS).  GIS software allows to display, 

organize and analyze such data in an efficient manner.   

Crop scouting with UAVs has been proposed as a potentially valuable application of UAV technology. 

The capture of high resolution images at very low altitudes suggest that images could be used to detect 

weeds and diseases that produce visual symptoms in the crop canopy (Peña-Barragãn, Castro-Mejías et 

al. 2013, Baranowski, Jedryczka et al. 2015). Although theoretically plausible such an application needs 

further evaluation to gain a better understanding of current limitations and developments required. We 

designed this study with the objectives to examine if UAV technology, as it is currently being marketed 

for on farm use, provides useful information for field scouting of weeds and diseases. 
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Protocol 
In April of 2014 we located two fields of 

each of the following six crops: barley, 

canola, field peas, potatoes, seed alfalfa and 

spring wheat.  The fields were located in 

southern Alberta and spread over four 

counties, namely the county of Newell, 

Wheatland, Kneehill and Starland.  Images 

of the fields were captured at three 

occasions during the growing season, 

ranging from May 26 to June 22, from July 

16 to August 1 and from August 10 to 

September 7.  The dates were chosen 

according to developmental stages of the 

crops (Table 1.).  The intent was to obtain a 

set of images early in the season, prior to 

pots-emergence herbicide applications, to 

evaluate their usefulness for weed 

detection. Whereas the purpose of the second and third set was to assess their potential for locating 

crop diseases.  

The equipment to capture the images consisted of 

a custom built fixed wing airframe (Fig. 4) 

equipped with a MicroPilot1 MP2028 flight control 

system and ground control software. 

Communication with the computer on the ground 

was through an XTend-PKG telemetry unit. The 

UAV had a 127 cm fuselage, a 183 cm wingspan 

and weighed 2,800 g including the payload.  When 

not in autopilot mode, during landing, it was 

piloted remotely with a 2.4 GHz Spectrum DX7 

controller2.   

The camera was a Canon PowerShot SX260 HS, in 

which the near infrared filter had been replaced 

with a filter to capture radiation in the red portion 

of the electromagnetic spectrum and allow the 

CMOS sensor to record the near infrared (700-1000 nm) portion of the spectrum.  Individual images 

contained 12 million pixels (3000 px by 4000 px) at 24 bits per channel and were stored in jpg format. 

The images, which were taken at 180 m above ground level, covered a 6 cm by 6 cm area on the ground 

for each pixel in the image. This is also referred to as a 6 cm ground sampling distance (GSD).   

                                                           
1 https://www.micropilot.com 
2 http://www.spektrumrc.com 

Figure 4. The custom build fixed wing UAV that was used for 

this project. It is equipped with a MicroPilot MP2028 flight 

controller, has 183 cm wingspan and weighs 2800g with 

camera payload.     

Table 1. A list of the dates at which the aerial images were 

taken. All images were taken in 2014 and there were two fields 

for each crop. 
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Flight plans for the quarter section sized fields had 10 to 12 passes for a total of 110 to 140 images per 

field.  These images were combined into a single image using AgiSoft3 and EnsoMosaic4 software. At 

least five ground control points were located along two or three boundaries of each field to serve as 

reference points.  The location of the ground control points was measured with a handheld Ashtech 

Mobile Mapper5 GNSS unit with an expected accuracy of +/- 0.1 m.   The ground control point markers 

consisted of a 1 m2 piece of white tarp marked with large black X.  

Ground level reference observations were conducted in all fields following the capture of each set of 

aerial images. Points of interest were chosen from the aerial images and located in the field using the 

Ashtech GNSS unit. Once located, a 1 m2 PVC frame was placed on the ground, within which disease 

incidence and weed populations were assessed.  A picture from a vertical position directly above the 

sample plots was taken.  In this case we used a remotely controlled DSLR camera (Canon EOS Digital 

Rebel XTi) mounted on a 2.5 m pole with a horizontal arm.  This setup was also used to collect additional 

images during early stages of crop development to further analyze the feasibility of detecting small 

weed seedlings. 

The orthorectified and geotagged mosaics were imported into ArcGIS6 for analysis and to generate 

images of a modified Normalized Difference Vegetation Index (NDVI). The NDVI provides a way to 

standardize pixel values to a range of values falling between -1 and +1.  They are calculated as follows: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

 

where R stands for pixel values in the red channel and NIR stands for pixel values in the near infrared 

channel. The resulting image has single grey scale channel which can be mapped to any arbitrary set of 

colors, for example, so as to highlight certain ranges of values that may represent a feature of interest.   

We used a modified version of this index to accommodate for the fact that our camera did not offer the 

option to record in the infrared and red channels at the same time.  This is of course a limitation on all 

cameras intended for normal photography.  Instead we used the following modified version: 

𝑁𝐷𝑉𝐼𝑚 =
𝑁𝐼𝑅 − 𝐵

𝑁𝐼𝑅 + 𝐵
 

 

where B stands for pixel values in the blue channel.  Replacing the red channel with the blue is the most 

commonly used modified NDVI in images acquired with UAVs for agronomic purposes UAV (Rasmussen, 

Ntakos et al. 2016).   

                                                           
3 http://www.agisoft.com 
4 http://www.mosaicmill.com 
5 http://intech.trimble.com  (Ashtech was acquired by Trimble who is no longer selling the Ashtek Mobile Mapper 
series of GNSS units) 
6 http://www.arcgis.com 

http://intech.trimble.com/
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Additional image processing and analysis was done with imageJ7, Matlab8 and to some extent with 

Adobe Photoshop9.  The open source imageJ software was used primarily for image segmentation and 

object analysis, whereas Matlab was used to develop the algorithm used to locate crop rows and also to 

conduct image segmentation.  Adobe Photoshop was used for resizing and reformatting, as well as for 

lightness and contrast adjustment.  

 

Usefulness of Images for the Detection of Weeds 
Field scouting for weeds is most useful in the 

spring before the application of herbicides, 

which can be prior to seeding, after seeding 

or both.  In either case weeds will be small 

and occupy only very little of the available 

space. The extent to which individual weed 

seedlings register on the sensor of a camera 

depends on the ground sampling distance.  As 

the ground sampling distance increases the 

contribution to the image of the light 

reflected by a small object decreases.  This is 

illustrated in figure 5, with a stinkweed 

seedling shown at a ground sampling 

distances of 0.01 cm, 1.0 cm and 6.0 cm.  At 

0.01 cm/pixel the color and shape of the 

seedling is readily distinguished from the 

background, at 1.0 cm/pixel the green color 

of the foliage is still being registered, but the shape is no longer distinguishable. Finally at 6 cm/pixel the 

color reflected from the seedling has only a small impact on the color of the pixel, and is no longer 

distinguishable from the background.  Consequently the field images we captured at a ground sampling 

distance of 6 cm are not suitable to detect individual weed seedlings. However this is not to say that 

larger weeds, or patches of weeds could not be detected.  

To further explore the weed detection potential of our aerial images recorded at a 6 cm GSD, we 

selected representative samples of images taken at a high resolution for ground truthing and down 

sampled them to the equivalent of 6 cm ground sampling distance. Then we overlaid the outline of crop 

rows and of weeds onto these images (Fig. 6) and calculated the proportion of background pixels, those 

covering soil and crop residues, that were not distinguishable from pixels covered with vegetation. We 

found that in four out of the six crops more than 80% of the pixels that were in fact background were 

not distinguishable from vegetation. The difference between background and vegetation was more 

pronounced in canola, where 61 % of the pixels were ambiguous and most well defined in potatoes 

were only 16 % of the background pixels could not be distinguished from vegetation.  

                                                           
7 https://imagej.nih.gov/ij 
8 https://www.mathworks.com/products/matlab/ 
9 http://www.adobe.com/ca/products/photoshop.html 

Figure 5.  Visibility of a small seedling on images with different 

ground sampling distances (GSD).  At a GSD of 6 cm the seedling 

can no longer be distinguished from the background.  The GSD is 

the distance covered on the ground by the width of one pixel. 
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If we had used a more advanced analysis that would have combined data from all three channels of the 

color images, it is likely that we could have reduced the proportion of ambiguous pixels, but probably 

not to the point that would allow reliable detection of weeds, especially when they are not clumped 

together.  We did however, examine the NDVIm values of pixels within the quadrats that were selected 

for ground truthing, and for which weed cover was measured.  The correlation results for weed cover 

and the corresponding NDVIm values are presented in table 2.  In barley, canola and peas the correlation 

was not significant.  It was significant in alfalfa and wheat, while only marginally so in potatoes.  The 

strength of the correlation is most likely related to the total weed cover. The correlations were strongest 

in those crops where the ground truthing quadrats had the highest weed cover (Fig. 7).  

In view the above findings it appears that for the purpose of weed scouting the images have to be of a 

much higher resolution.  The problem with increasing the image resolution is that it also drastically 

increases the size of image files per unit area of terrain covered.  For example, decreasing the ground 

sampling distance from 6 cm to 1 cm would increase the number of pixels by a factor of 36.  A typical 

orthoimage of a quarter section that may occupy 350 MB at the 6 cm GSD would increase to 12.2 GB at 

Figure 6.  Limitations of image resolution on the ability to distinguish growing vegetation from the background.  For 

each crop (A) the corresponding 6 cm ground sampling distance (GSD) gray scale image (B) is shown with vegetated 

areas outlined in yellow.  The proportion of background pixels (free of vegetation) that on the 6 cm GSD image could 

not be distinguished from pixels with actively growing vegetation were as follows: 89% for alfalfa, 86% for barley, 

61% for canola, 86% for peas, 16% for potatoes and 82% for spring wheat.   
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1 cm ground sampling distance, therefore 

making it challenging to process with ordinary 

computer systems. This problem can be 

avoided if images are processed as they are 

captured and only the extracted information 

is retained.  We tested the feasibility of this 

approach on a set of images taken at a height 

of 2.5 meters with the objective to determine 

percent weed cover within each image.  

Ultimately this approach could be used to 

generate a weed density map on the basis of 

percent weed cover values extracted from 

images that only represent a sample of the 

entire field.   

The primary challenge in determining weed 

cover is to separate pixels with vegetation 

into crop and weed categories.  Given the 

diversity of crops and weeds it is not likely 

that this can be achieved on the basis of 

spectral patterns of reflectance. Instead we propose to determine weed cover by considering only the 

space not occupied by crop rows.  The process consists of locating the crop rows within the image, then 

removing from the analysis pixels that a part of the crop rows by assigning them a value that is out of 

range (black or white) and finally determining the proportion of pixels that show living vegetation in the 

remainder of the pixels.   

To locate the crop rows we used a technique known as 

the Hough transform, to find linear features within the 

image (Dlouhy, Lev et al. 2016).  The five highest 

candidate linear features were then tested for 

consistency in their orientation angles. For each 

candidate angle and for each candidate row count a fit 

score, which assumed a fixed row distance, was 

calculated. A fit score was calculated for a range of 

possible row offsets from the image border as well as 

orientation angles.  The row location and row angle 

was then selected on the basis of the highest fit score. 

The remaining rows were located on the assumption 

of a fixed row spacing and parallel orientation, using 

discrete optimization criteria.  Finally for each row, a 

sliding window was searched around the center line to 

locate the row boundary, so as to include at least 95 % 

of the vegetation at any location of the sliding 

window.  The resulting row boundaries were straight 

lines with no attempt made to account for variations 
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Figure 7.  Percent ground cover of weeds and crops 

within the 1 m2 quadrats established as ground control 

points for each crop. 

Table 2. Correlations between ground cover of weeds and the 

corresponding average NDVI values.   Weed cover was 

estimated visually for each ground control plot whereas the 

NDVI values were derived from the aerial images.  Low chi-

square values (<0.05) indicate statistical significance. 
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in row width.  The algorithm was tested on 9 sample 

images of wheat ranging from growth stage 1 to 3 

and 6 sample images of barley ranging from growth 

stage 1 to 5 on the Feekes scale of cereal growth.  

The algorithm was found to work quite well, correctly 

locating 96 % of the crop rows (Fig. 8).  Problems 

occurred in a few cases where the assumptions of 

parallel and/or equally spaced rows were violated.  

The performance of the row detection algorithm to 

calculate the percentage weed cover in the space not 

occupied by crops was tested by comparing weed 

cover calculated from visually delimited inter-row 

space to weed cover values obtained when crop rows 

were treated as bands with straight borders (Fig. 9).  

The calculations were done on 16 grey scale images 

using only the red band. The results showed that 

aside from three exceptions the differences in 

percent weed cover obtained from the manual or 

automated methods were small (Fig 10). However even with the exceptional values included the t-test is 

not significant at the 10% probability level.  Consequently it appears that treating crop rows as bands 

with straight borders does not lead to less accurate estimates of weed cover.  

From the above we can conclude that in principle it should be feasible to photographically sample fields 

in a systematic fashion and to process these images to extract weed coverage values.  These data points 

can then be interpolated to generate a weed coverage map. Such maps would only require minimal 

Figure 8. Delimitation of crop rows with the Hough 

algorithm.  

Figure 9.  Inter-row space delimited by crop rows  with irregular shaped edges(A.) and inter-row space delimited by 

crop rows with straight edges (B.). The weed density was calculated as the percentage of pixels occupied by 

vegetation relative to the total number of pixels in the inter-row space.   
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computing resources for display and could readily be 

processed for use in precision farming.  However, 

because of the often patchy distribution of weeds and 

the relatively small size of typical weed patches, the 

sampling interval has to be small enough to capture 

patches that may only be a few meters wide (Gold, 

Wilkerson et al. 1996).  Therefore sampling density 

and the dimensions of the area covered by each 

sample will have to be optimized to obtain a map that 

is sufficiently accurate.  As a general rule we can 

anticipate that the distance between samples has to 

be less than the width of the weed patches that are to 

be detected and the area covered by each image will 

also have to conform to this scale (Krueger, Wilkerson 

et al. 2000).  Consequently, an accurate weed density 

map that can resolve patterns in the 10-20 meter 

range will require a large number of sample points per 

field.  For example, to cover a quarter section on a 5 m 

grid 25,600 sample points would be needed.  

Capturing and processing this many images certainly 

poses a technological challenge beyond the capacity of 

low cost UAV’s.  Fortunately the problem can be 

circumvented by extracting multiple sample points 

from single images.  An image that covers 20 by 20 

meters on the ground could be used to obtain at least 

25 sample points, each averaging the weed cover for a 4 m2 section. In this way the number of images 

and flight passes across the field could be drastically reduced, bringing it within the range of current 

UAV technology available for on farm use.  

 

Usefulness of Images for the Detection of Diseases 
Many plant diseases result in the formation of patterns that are visible when a crop canopy is viewed 

from above.  These patterns reflect the presence of unhealthy plants, but without necessarily revealing 

any specific symptoms.  The reason that distinct patterns can be observed is because infections are 

more likely to spread to neighbouring plants than to plants further away, therefore producing visible 

patches in the crop canopy.  Depending on the virulence of the disease such patches will grow more or 

less rapidly and merge with other patches in the vicinity (Evans, Baierl et al. 2003, Isard and Chamecki 

2016).  

However, not all patches that appear in a crop canopy are due to disease.  In fact there are numerous 

causes that will produce some kind of visible mark on a crop canopy.  Some of the common undesirable 

patterns we observed were due to seeding problems, vehicle traffic, accumulation of crop residues, 

poor drainage and soil conditions (Fig. 11).  Fortunately patterns in the crop canopy that are produced 

by diseases tend to have characteristics that can be distinguished from patterns that have other causes 

Figure 10. The difference in percent weed cover in 16 

sample images, where weed cover estimates obtained 

on the basis of rectangular inter-row sections were 

subtracted from  estimates where weed cover was 

calculated on the basis of irregularly shaped, visually 

defined inter-rows.  When all three extreme values are 

included the t-test gives an 11 % probability that there is 

in fact no difference between the two methods.  

Without the three extreme values this probability 

increases to 83 %.  
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(Clark 1990).  Diseases tend to spread radially, 

therefore producing circular or oval shapes 

without the linear features that are produced by 

mechanical equipment.    

It is therefore possible to assign criteria that could 

be used to eliminate patterns that are unlikely to 

be caused by disease and select those that are for 

further inspection. Table 3 describes several 

commonly used measures to quantify the shapes 

of two dimensional objects.  Individually or in 

combination these measures can be used as 

numerical sieves to remove objects based on 

specific shape criteria. Using this technique we 

were able to easily remove tracks and rectangular 

patterns that were produced by farm equipment. 

We also found that the orthoimages that we 

produced were sufficiently accurate to locate even 

small patches.  We were able to transfer the  

*where a is the major axis and b is the minor axis of a two dimensional shape, H is the height and W with the width of the bounding rectangle.   

Table 3. Common measures to describe simple two dimensional geometric patterns, their formula and values for 

a range of typical shapes.   

drainag

e seeding 

vehicl

e  
crop residue 

Figure 11. Crop canopy patterns readily distinguishable  from 

potentially diseased areas.  Such patterns exhibit shapes or 

are associated with locations that discard the possibility of 

plant disease.  
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coordinates from the images and consistently find these locations on the ground using our handheld 

GNSS unit. The most basic application of UAV generated images could therefore consist in examining the 

field mosaics or the derived NDVI images and locate patches that suggest the presence of infected 

plants.  

Given that a detailed visual inspection of a large image (500 MB) is very time consuming, it would be 

advantageous to automate the process of locating potentially infected areas. This can be achieved by 

segmenting the images to assign certain values to regions of greater similarity and subsequent filtering 

so as to retain only those patterns that match a given set of criteria.  To this effect we used a trainable 

segmentation algorithm that relied on samples of the patterns of interest to locate similar patterns.  To 

avoid unnecessary complexity, image areas not part of the area under cultivation (road allowances, 

sloughs, buildings, etc.) were masked and therefore removed from the analysis. A mask is a binary or 

greyscale image that delimits the areas to be included for further processing.  Once created a mask can 

be reused for the same field as long as the surface under cultivation remains unchanged.   

We found that the number of patches of interest within a field can vary considerably.  This depends on 

the crop and the characteristics of the patches that are being searched for.  For the purpose of 

discovering potentially diseased areas we examined the mosaics of the images taken mid-season, with 

capture dates ranging from July 16 to August 1.   

The alfalfa images revealed distinct patterns that were the result of localized drought stress, which was 

confirmed by field inspection of these areas (Fig. 12).  The problem could have been due to deficiencies 

in the irrigation equipment (center pivots), to differences in the water holding capacity of the soil, or a 

combination of both factors.  In this case the patches were fairly large and readily identifiable from a 

visual inspection of the image, even when zoomed out to a much lower resolution than the original.  It is 

noteworthy that the algorithm was able to largely ignore the effect of the shading produced by the 

clouds, which was not easily achieved by visual observation.   

In the case of the barley fields the images were again dominated by a smaller number of large patches 

with fairly irregular shapes (Fig. 13). These images were taken on July 16 at a time when the crop canopy 

had already started to senesce.  Ground truthing revealed that these patches reflected more advanced 

crop maturity and that there was a certain amount of foliar disease present, but this appeared to have 

had a minor impact compared to variability in crop maturity. We concluded that other factors, such as 

differences in soil and landscape position were most influential in the patchiness that we observed. This 

finding highlights the importance of timing and the constraints this presents to anyone aiming at 

covering a large number of fields.  

The segmentation of the canola fields produced a very different pattern. This time there were numerous 

small patches more or less oval in shape (Fig. 15).  In the field shown in figure 15 A., the patches tend to 

align with the crop rows, which was not the case in the other field where no distinct rows were present, 

because it had been seeded in two passes at right angles.  The selection algorithm excluded track marks, 

seeding misses and areas with bare soil, but attempted to capture areas that had a reduced amount of 

vegetation compared to their surroundings. Such patches could be the result of disease or other causes.  

For this project we did not have the resources to do a comprehensive survey to investigate individual 

patches. Nevertheless, it is likely that a map of patches with reduced vegetative cover has the potential 
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to greatly increase the likelihood of detecting diseased canola plants.  Instead of randomly sampling the 

entire field, the map allows to concentrate on areas with a high likelihood of the presence of diseases,  
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such as clubroot, blackleg, verticillium, etc. This is especially true when affected areas are small and 

unevenly dispersed.  As for example in figure 14-A. where 1073 patches occupied only 5900 m2, which 

corresponds to 0.9% of the total field area.  If one were to randomly sample this field with non-

overlapping 1m2 quadrats at least 200 samples would be needed for a 50% chance of capturing one or 

more of the areas marked as a patch (assuming a binomial distribution).  In other words detecting things 

that occur in small patches distributed across a large area, requires a large number of samples if a 

random approach is used.  If instead we can target the sampling towards areas with a higher probability 

of presenting the condition that we are trying to detect, the sampling can be substantially reduced.  This 

may be especially useful for the early detection of relatively slow spreading soil-borne diseases. 

When the segmentation was applied to the pea fields, which were taken on August 1 (Fig. 15 A.) and July 

29 (Fig. 15 B.) we found that the patches were formed by the more vigorously growing areas, while the 

areas that had lower NIR values (less red) were more or less merged together into the background.  

Again the algorithm was fairly effective at separating the effect of shading by clouds from the crop 

canopy. Similarly to the barley fields in figure 13, the patterns in the pea canopy reflect the onset of 

senescence, which appears to be influenced by soil related patterns.  This shows that crops can be quite 

variable within a field, which is most likely also reflected in the yield distribution.  

The two potato fields in figure 16 exhibited distinct variety dependent canopy characteristics. The 

cultivar in Field A. had an open canopy with substantial bare space not covered by the crop canopy 

between crop rows. While the cultivar in field B had a completely closed canopy. Not only did the 

cultivar in field A produce less foliage, but it also began to senesce much earlier.  In fact the 

segmentation of this field captured a very large number of small patches defined by NIR values that 

were intermediate between healthy vegetation and bare soil. The segmentation method used was 

effective at locating problems specific to the canopy and ignoring inter-row space and other areas not 

occupied by the crop. Individual patches do not necessarily indicate disease, but they present a much 

reduced subset of the whole field that could be subjected to further analysis and subsequent field 

sampling.  

In field B the patches were of a different nature, again much larger and fewer in number.  They were for 

the most part readily visible when zoomed out and appear to reflect patterns determined by soil 

conditions.  In fact most of the larger patches were associated with excessive soil moisture.  Although no 

specific disease problem could be identified, the areas delimited by the segmentation suggest crop 

stress that may favour the development of disease.  As such the image could be useful for monitoring or 

for long term field management.  

The two fields of spring wheat presented different types of problems.  Field A shown in figure 17 had 

areas with lodging and also areas with reduced stand density.  The lodging was in some areas difficult to 

delimit because it could at times taper of gradually without a clear border.  The drainage channel and 

the access road on the north end, as well as the slough in the south western section of the field were 

masked out as permanent non-crop features.  However the unseeded strip in the southern portion was 

removed by the segmentation because it fell outside of the color and shape criteria.  In this case the 

observed patches were not indicative of disease, but instead may point to higher levels of available 

nitrogen where lodging occurred.   
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The wheat field in figure 17 B, consisted of a very uniform stand with no obvious patches at the time the 

image was captured (July 27).  The lack of well-defined patterns within the field area made it difficult to 

correctly assemble the mosaic.  The problem areas were highlighted in red.  It can also be seen that 

there are four vertical bands, which are an artefact stemming from image capture, possibly due to light 

reflecting from the side of the UAV into the camera lens, which was mounted under the wing. Although 

there were problems in important areas of this image there was enough detail in other areas to reveal 

modest damage caused by deer.  

In the case of wheat and barley during ground truthing 

we also collected ten flag leaves within each sample 

area. The amount of foliar disease (leaf spots) was 

rated using a modified Cobb scale and averaged for 

each sample.  We tested if there was a correlation 

between disease ratings and the average NDVIm value 

from which the leaves were taken.   But there was in 

fact no correlation (Fig. 18).  This result was not 

unexpected because as already mentioned, much of 

the barley crop had already began to turn yellow and 

had stopped photosynthesizing and there was little 

foliar disease in the wheat fields.  Any effect caused by 

leaf spots was drowned out by the overall loss in 

photosynthesis.   

Our results show that image segmentation can be 

effective at identifying patches in a crop canopy that 

could be caused by disease.  The algorithm used 

worked with a wide range of patch size and 

distribution patterns. It was also capable of ignoring patches that were likely related to field operations, 

such as vehicle tracks and seeding misses. However, the presence of patches does not imply the 

presence of disease.  Therefore additional verification is required, which could consist of visual 

inspections, additional UAV based close-up photography with manual or automated diagnostics, or the 

use of a UAV to collect samples.  When the number of suspect areas is small, then in-person visual 

inspection is probably the most efficient way to proceed.  UAV based solutions would be most beneficial 

when there are a large number of patches with a low probability of being positive for a particular 

disease.  Automated navigation to capture images at close range at multiple locations within a field, is 

now within the capability of current UAVs (Dlouhy, Lev et al. 2016).  The automated recognition of 

disease symptoms has been demonstrated for citrus black spot (Guignardia citricarpa) on oranges, 

where object recognition (isolation of shapes) and spectral signatures were combined to achieve 

accuracies of 96 % (Bulanon, Burks et al. 2013).   

In situation where a disease may be limited to relatively small patches, such as would be the case during 

the early stages of infestation with a soil born disease, segmentation can help to identify potential areas, 

and therefore reduce the number of samples needed to detect its presence (Hillnhütter and Mahlein 

2008). Early detection of diseases such as clubroot or Verticillium may allow for management options to 

contain their spread within the affected fields.  Armed with a list of coordinates of potentially infested 

areas a field scout could survey for the presence of symptoms on canola stubble in a fairly efficient 

Figure 18. Absence of correlation between NDVIm and 

disease rating (modified Cobb scale) on flag leaves of  

barley and wheat. 
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manner without having to cover the whole field or limit the surveying to strategic points, such as the 

field entrance.  

When patches are large enough to be readily visible on an image displayed at full extent and the patches 

are small in number, there is probably no need for an automated analysis.  In these situations an 

experienced person will be able to interpret the image more accurately and more rapidly than can be 

done with current algorithms.  The strength of the computational approach is the ability to process large 

amounts of visual information in a very detailed manner. Consider that an image of a quarter section 

captured at a resolution of 5 cm ground distance per pixel will contain 280 million data points per 

channel. When zoomed to 100 % (i.e. all pixels displayed) a regular HD monitor will only cover about 

0.75 percent of the image, which makes the detailed visual inspection for crop scouting purposes 

impractical.  

Indices calculated from spectral bands, such as the NDVI, are often used to classify pixels based on 

correlations with ground level observations. For reasons that have to do with scale and the varying 

spectral quality of incident light, these correlations often lack the robustness needed to reliably identify 

vegetation characteristics across different data sets.  In a study on wheat rust, one author concluded 

that vegetation indices, including the NDVI, were generally poor predictors of disease severity 

(Ashourloo, Mobasheri et al. 2014).  Good performance of the classification based on the indices was 

only obtained for low level foliar infections rated between 5-10%. Errors increased substantially for 

infection rates outside of this range.  This suggests that a combination of spectral and object based 

analysis is needed.  The latter would of course require even higher resolution images, which would have 

to be targeted to areas that are most likely to present symptoms.   

 

Economic analysis 
 

Cost of Conventional Field Scouting in southern Alberta 

Methodology 

Consultants and farmers employing consultants were contacted to provide prices for services as well as 

a summary of services provided. A total of five consulting service providers were interviewed covering 

an area bounded by Calgary on the west, Oyen at the north east, and Granum in the south west.    

Findings 

The cost of conventional field scouting in southern Alberta for traditional crops is in a very narrow range 

and the most common charge is $4.00 per acre. This price is based on a farm size in the order of 1500 

acres or more. Field scouts surveyed indicated that the upper limit on the number of acres that could be 

scouted is about 20,000 acres for a scout with one assistant. The number of crops was not limited, but 

the farms surveyed produced a maximum of five cash crops. Irrigated field scouting is based on the 

same price for crops not requiring any special additional activities. Potatoes are the only crop identified 

as having a higher cost. The cost of field scouting for potatoes was not determined. 

Services provided were also quite consistent. Field scouts would spend an average of five days on field 

scouting during the growing season and provide specific recommendations and advice on the use of 

seed varieties, fertilizer, chemicals as well as ongoing feedback to famers on the best practices regarding 
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the production of crops. Scouting activities include the identification of weeds and diseases that are or 

could result in yield loss. 

 

Unmanned Aerial Vehicle Mapping Cost 

Methodology 

Two service providers in southern Alberta were contacted to determine cost and services provided. One 

service provider was able to provide images and information on cost of services. Research on technology 

available from interviews with service providers as well as publicly available information on unmanned 

vehicle hardware and software costs was collected.  The information was used to estimate the operating 

costs of a farm owned UAV.  

Findings 

Current services in southern Alberta for agriculture consist of fixed wing air frames equipped with on 

board camera(s). Prices charged for generating an orthoimage of a field range from $3.00 to $4.00 per 

acre, depending on the volume of work. For this price the provider generally also includes an NDVI 

version of the field image.  However the price does not include any interpretation or agronomic 

Table 4. Cost estimate of operating a farm owned UAV on the basis of providing aerial images of 2000 acres 12 

times during a cropping cycle.  The cost do not include ground truthing, interpretation of the imagery, or the 

development of agronomic prescriptions.  
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prescription generated from the image. Fixed annual operating costs for a farm owned UAV were 

estimated at $15,000 per year (Table 4).  For a 2000 acre farm the cost per acre would $7.50. Since 

multiple field images are needed to fully utilize the information that can be obtained from aerial images 

the cost per acre captured will be lower.  For example, if twelve sets of images are captured the cost per 

acre would be only $0.63, which is of course much below the $3.00 per acre that specialized UAV 

operators are likely to charge. However the cost estimate for a farm owned and operated UAV does not 

include compensation of the owner’s time needed to keep up with this rapidly developing technology 

and supervising an additional operation during an already busy field season. Furthermore one should 

also consider that, although largely automated, the operation and supervision of a UAV requires 

knowledge and compliance with the laws that regulate airspace.  In practice this means that the person 

responsible for the UAV must obtain the necessary clearances, such as a Special Flight Operating 

Certificate for a specified location and time, as well as communicate with nearby airports and pilots 

sharing the airspace to inform them about the flight plans.  

 

Expected Cost of UAV assisted Field Scouting 
The following summarizes the estimated costs for a field scouting service supplemented with aerial 

imagery acquired with a UAV.  Currently there is no such service provider operating in Southern Alberta.  

Findings 

A farmer owned UAV is estimated to cost $7.50 per acre, based on allocated fixed operating costs of 

$15,009 per year.  For a 2000 acre farm where each field is captured 12 times during the cropping cycle 

the cost per acre would be $0.63.   

If an UAV map is provided once a week for an arbitrary 12 weeks and cost is $3.00 per acre, then total 

cost for the aerial mapping would be $36 per acre. With the farmer collecting his own images and 

making them available to the field scouting service provider, the cost of acquiring the images could be 

considerably less, estimated at $7.50/acre for a set of 12 field images (Table 5).  

Considering that time required to inspect fields is a major constraint for scouts, the use of aerial images 

may be very helpful, especially in view of new developments in precision farming.  The current crop 

management model, where each field is treated as a more or less homogenous unit for the purpose of 

crop protection, will most likely be superseded by a model that operates on the basis of knowledge of 

the spatial heterogeneity within fields.  Consequently there will be a growing expectation that field 

scouts can deliver this kind of information, which will include maps that can be readily loaded into the 

navigation systems of farm equipment. Once the aerial monitoring and mapping of crop performance 

becomes a regular part of crop production, the ability to store and analyze this information will greatly 

enhance its value.  There is little doubt that the next generation of crop consultants will need to have 

the skills to work with large amounts of spatial data that may be obtained from a variety of sources, 

such as UAVs, satellites, yield monitors etc. For farmers the benefits of early adoption may not be 

immediately apparent, but will certainly make a difference over the longer term, because of their 

enhanced ability to position their enterprise to take advantage of new variable rate seeding and 

spraying technology as it becomes available.   
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Table 5. Cost comparison of UAV assisted custom field scouting, where the aerial images and derived products 

(e.g. NDVI field image) is either fully contracted out or where only the field scouting is contracted out with the 

farmer supplying the aerial images at cost and without charging for labour.  

 

 

 

Comparison of the Cost of Crop Protection Inputs and the Cost of UAV Assisted Field Scouting 

Methodology 

Consultants, farmers, and input providers were contacted to provide a summary of crop weed and 

disease control practices in Southern Alberta. Estimates of crop protection costs were based on prices 

charged in 2015, as determined by interviewing producers and input providers in an area bounded by 

Calgary on the west, Oyen at the north east, and Granum in the south west.  

Findings 

As shown in table 6, the cost of crop protection varies considerably between crops.  The crops with the 

lowest cost are barley and spring wheat, followed by canola, field peas, seed alfalfa and finally potatoes.  

Of course not all items are equally important for all crops. For example weed control is much higher in 

potatoes and seed alfalfa then it is in the other crops.  However, in practice these costs can fluctuate 

considerable as a result of new pests or the need to use a more expensive control product because of 

pest resistance to cheaper products. For example with herbicide resistant weed, farmers may have to 

switch to multiple more expensive products, where a single low cost product would have previously 

done the job. 

The cost of UAV assisted field scouting can be expected to be three to ten times the cost of conventional 

field scouting (Table 5).  At the highest estimated cost, $40/acre, it would correspond to 44% of the cost 

of crop protection in barley or spring wheat, 37% in canola, 30% in field peas, 10% in potatoes and 25% 

in seed alfalfa.  There should be a substantial net gain to justify this expense, which is probably most 

readily achieved in crops with the highest crop protection costs.   

With respect to crop protection this technology is most likely to provide satisfactory economic returns 

where variable rate applications make sense (uneven distribution of a relatively immobile pest) or where 

the analysis of the imagery can lead to early detection of a pest that has the potential to severely reduce 

crop yield and/or future crop options if allowed to spread. Examples of the latter are clubroot in canola 

or late blight in potatoes.  
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Table 6. Per acre cost estimates of crop protection inputs for selected crops in Southern Alberta.  The estimate 

include the cost of application based on average rates charged by custom applicators.   
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Conclusion 
 

Early season weed scouting: 

 The resolution of the aerial images obtained (6 cm GSD) was too coarse to assess weed density 

early in the season.    

 A GSD of 6 cm (1 pixel corresponds to 6 cm by 6 cm on the ground) results in images where 

pixels covering small weeds are often not distinguishable from soil or other background that is 

not living plant material. Capturing images at higher resolutions is possible, but is not practical 

because of the very large amount of data that would have to be processed and managed.  

 As an alternative to whole field image mosaics we showed that it is possible to extract 

information on weed density by removing crop rows from images captured at a much higher 

resolution and calculate weed density on the basis of vegetation found between crop rows.  In 

this way a weed density map can be constructed without the need to first generate an image of 

the entire field. 

 

Disease detection in crops: 

 The resolution of aerial images obtained was adequate to clearly locate areas as small as one 

square meter.  

 Segmentation algorithms can be effective in locating areas within crops that exhibit patterns 

that may be associated with certain diseases.  

 Automated pattern detection can be especially useful where the affected areas are small and 

would otherwise require time consuming visual searches of large images. 

 Aerial images captured with UAVs are a new tool for the early detection of crop diseases. 

 

Economic feasibility: 

 The addition of UAV acquired aerial images to regular crop scouting services, where each service 

is contracted to a separate provider, would drastically increase the cost and therefore could only 

be considered in high value crops, such as potatoes. 

 UAV acquired aerial images could be produced at a much lower cost if done by farm owned and 

operated equipment, as opposed to a contracted service. 
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