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Section A: Project overview 
 

1.  Project number: 2012F035R 

2.  Project title: Understanding Soil Variability for Effective Zone Management in Precision 
Agriculture –an   evaluation of sensor based soil mapping tools 

3.  Abbreviations: Define ALL abbreviations used. 
Electrical Conductivity (EC); EM38-MK2 (EM38); Veris-MSP3 (Veris); All Terrain Vehicle (ATV); 
Nitrogen, Phosphorus, Potassium, Sulphur (NPKS); Farming Smarter (FS); Variable Rate (VR); Smoky 
Applied Research and Demonstration Association (SARDA); Normalized Difference Vegetation Index 
(NDVI); Power of Hydrogen (pH); Organic Matter (OM); Electromagnetic (EM); Unmanned Aerial 
Vehicle (UAV); Principle Components Analysis (PCA); Management Zone Analyst (MZA); Global 
Positioning System (GPS); Geographic Information System (GIS); Randomized Complete Block Design 
(RCBD); Near Infrared (NIR); Return on Investment (ROI) 
 
Precision Ag, Site-specific management, Electromagnetic induction sensors, EM38, Veris, On-farm 
research, Soil variability 
4.  Project start date: 2012/03/19 

5.  Project completion date: 2015/10/31 

6.  Final report submission date: 2016/01/04 

7.  Research and development team data 

a) Principal Investigator: (Requires personal data sheet (refer to Section 14) only if 
Principal Investigator has changed since last report.) 

Name Institution 
Ken Coles,  M.Sc, P.Ag Farming Smarter Association, Lethbridge 
b) Research team members (List all team members. For each new team member, i.e., 
joined since the last report, include a personal data sheet. Additional rows may be added 
if necessary.) 

Name Institution  
Muhammad (Adil) Akbar, Ph.D., P.Ag., P.Eng. Farming Smarter Association, Lethbridge 

Lewis Baarda, M.Sc. Farming Smarter Association, Lethbridge 

Dennis Dey Independent 

Vance Yaremko SARDA 

Curt Walker Ag Viser 
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Section B: Non-technical summary (max 1 page) 
Farming Smarter initiated this study to compare performances of two soil EC sensors, EM38-
MK2 (EM38) and Veris MSP3 (Veris). The study assessed soil EC mapping as a low cost 
alternative to grid soil sampling for estimating in-field soil variability. Additionally, the study 
assessed the capacity of soil sensors as well as other layers of mapped data to create zones for 
variable rate management applications.  
 
The study showed that EM38 and Veris performance is accurate and consistent over both time 
and space. Soil EC maps from both sensors were found to be strong indicators of the presence 
of clay and soil moisture. However, the study revealed that mapped EC data could not be used 
for a direct estimation of the spatial distribution of plant macro-nutrients (NPKS). 
 
The project tested five different zone delineation methods in each of the 10 fields studied.  
Zones were delineated using surface geography, grid soil samples, historic yield maps, EC, and 
composite (yield + EC) methods.  All five methods had some level of success at identifying 
regions that yielded differently from one another.  The composite (yield + EC) method was the 
most consistently effective at differentiating zones of productivity. However, the study was not 
able to identify a unique yield response to nitrogen for the zones identified. In other words, the 
optimal rates of nitrogen identified for different zones were not statistically different from one 
another. The upshot is that although zones derived from various data sources identified regions 
with consequence for yield, the study could not consistently identify an effective variable 
nitrogen management strategy for these zones. The study shows that variable rate technology 
requires a variable approach; there is not a universal method that will be effective in all 
circumstances. The zone delineation techniques tested had varying levels of success in different 
fields.  Producers should be prepared to develop a specific VR strategy for each field, and are 
advised to evaluate strategies using methods developed by FS in this study. 
 
This project provides a methodology for creating and testing management zones for VR 
practitioners.  The study also challenges the viability of a formulaic approach to zone 
delineation and management.  These study results provide producers information to make 
better decisions around investment on equipment or services for VR technology 
implementation. For those producers using VR technology, this study offers new guidelines on 
choosing an appropriate VR strategy and provides a method for producers to assess the efficacy 
of any particular strategy. 
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Section C: Project details 
 
1. Background (max 1 page) 
 
That soil variability exists within fields and can cause varying effects on crop yield is well known. 
Intensive sampling of soil properties can provide a useful description of the variation in soil 
properties, but carries a prohibitive cost. The recent confluence of GPS technology, soil sensors, 
and improved data management offers the ability to efficiently and precisely map certain soil 
properties within fields.  However, we need a better understanding of crop production 
implications and response to variably managed inputs to benefit from these data. 
 
Precision agriculture consulting companies typically use satellite images, historical yield maps, 
or terrain analysis to delineate areas in a field likely to have similar soil properties and response 
to management. Then they use representative soil samples to characterize different zones. This 
approach is efficient and widely used. However, questions regarding the accuracy and 
effectiveness of delineated zones require continued evaluation and improvement of this 
approach.  
 
EC sensors provide one additional layer of data to improve zone delineation, crop response 
predictions, and prescriptions. Electromagnetic induction can map field variability in soil salinity 
and texture and may also detect variation in other soil properties (Corwin and Plant 2005; 
Triantafilis and Lesch 2005). The EM38 (www.geonics.com) and Veris (www.veristech.com) are 
the most widely used commercially available instruments. The EM38 instrument does not 
require soil-to-instrument contact and can quickly obtain readings with minimal disturbance. 
The Veris instrument uses soil-to-instrument contact to map EC. Recently-introduced models of 
the Veris machine also measure soil variability in organic matter (OM) and pH. 
 
Recent work in Australia demonstrated that EM38 measurements and soil sampling can map 
fields based on soil factors that constrained yield (Taylor et al. 2007; Dang et al. 2011). The 
proposed framework to estimate the monetary value of site-specific management options 
included: (i) identification of potential management classes from EM38 measurements; (ii) 
measurement of the soil attributes generally associated with soil constraints in the region; (iii) 
grain yield monitoring; and (iv) simple on-farm experiments. This study used a similar 
framework to evaluate the value of sensor-based soil mapping tools for Alberta. 
  

http://www.veristech.com/
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2. Objectives and deliverables (max 1 page) 
 

2.1 Objectives  
• Objective 1: Evaluate two sensor-based soil mapping tools (EM38-MK2, Veris-MSP3) for 

ease of use, accuracy, consistency, and utility 
• Objective 2: Determine relationships between soil properties, soil moisture availability 

and crop yields for identified soil management zones 
• Objective 3: Identify and evaluate protocols to delineate soil management zones based 

on multiple sources of information (farmer knowledge, yield maps, topography, remote 
sensing, soil mapping tools) 

• Objective 4: Identify and test the top recommended management option for variable 
management 

• Objective 5: Develop and deliver information about soil mapping tools and how best to 
use them to producers through a variety of communication mediums  

 
2.2 Deliverables 

Annual and final report based on findings: 
• Recommend method(s) to obtain and use soil sensor maps to develop variable 

management prescriptions for agricultural fields in Alberta 
• Estimate accuracy of sensors for different soil properties 
• Estimate improvement in understanding of field variability in crop yields, soil moisture 

availability and crop water use efficiency through information derived from soil sensor 
maps 

• Initial assessment of  top variable management recommendations 
 
Communication of the study’s findings: 
• Websites: www.farmingsmarter.com, www.areca.ab.ca, www.agric.gov.ab.ca 
• Talks and tours: Western Canadian Precision Ag Conference, Farming Smarter 

Conference, Agronomy Update, Plot Hops, Farming Smarter Field School 
• Other outlets: Farming Smarter magazine, newsletters, social media and popular press 
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3. Research design and methodology (max 4 pages) 
 
3.1 Objective 1: Evaluate two sensor-based soil mapping tools (EM38-MK2, Veris-MSP3) for 
ease of use, accuracy, consistency and utility.  The project evaluated the two soil sensors by 
using them to map agricultural fields and test the data. Recognizing that each field is unique, 
this project treated each study field as its own trial. Please note that the unique nature of each 
field occasionally necessitated subtle deviations in trial implementation. The research team 
gained hands-on experience in the field operation and calibration of the Veris and EM38 soil 
sensors. 
 
3.1.1 Site Selection: The team selected ten trial fields from cooperators working closely with FS 
in Southern Alberta and with SARDA in the Peace River region in northern Alberta.  We insisted 
that cooperators have the capacity for VR application of nitrogen while seeding as well as yield 
mapping at harvest.  
 
3.1.2 Data Collection: The research team collected two types of data from each field. Mapped 
data are the georeferenced readings gathered from soil sensors or UAVs. Measured data are 
lab analyzed measurements of soil properties from physically sampled soil cores. Technicians 
collected both mapped and measured data concurrently at two separate times for each field.  
 
3.1.3 Mapped Data: Mapped data collected included Veris (EC pH and OM), EM38 (EC), aerial 
imagery (NDVI), yield maps, and elevation. 

 
3.1.3.1 EC Data: The research team conducted EC mapping only when soil moisture levels 
were normal and the temperature above freezing to protect against collection of poor or 
inaccurate data. Both sensors were operated together, the Veris attached to a tractor, and 
the EM38 in a plastic sled towed at a reasonable distance to avoid proximity to metals. The 
study mapped fields in 20 meter transects, a standard practice for soil EC mapping. An 
alternating transect mapping pattern allowed the operator to identify drift in measurement 
and ensure proper data collection.  
 
3.1.3.2 Veris-MSP3: The Veris-MSP3 (Veris Technologies, 2015) is a tractor mounted sensor 
whose primary function in agriculture is to measure the apparent EC of soil. The Veris is a 
contact-based EC sensor and has three pairs of coulters designed to maintain contact with 
the soil. An electric current passes through the soil between each pair to measure the 
resistivity of the soil, which is then converted to an apparent EC value. The coulters are 
arranged so that the machine can measure EC at both 0.75 and 1.5 meter depths 
concurrently. 
 
The Veris model (MSP3) used in this study can also collect OM and pH data. An optical 
sensor located at the rear of the machine measures OM by gauging soil reflectance in both 
visible and near infrared (NIR) wavelengths. Darker soil gathers higher OM readings and 
lighter soil gathers lower OM readings. The Veris collects soil pH data by physically digging 
into the soil and gathering surface soil samples on the go.  A pair of probes measure and 
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record the pH of soil samples then rinse themselves clean prior to the next sample. This 
sensor is not continuous; it takes a reading about every 30 seconds. The EC and OM sensors 
on the other hand are essentially continuous, providing a much denser coverage of mapped 
data. Operators tested and properly calibrated all three Veris sensors before mapping each 
field. 
 
3.1.3.3 EM38-MK2: The EM38 (Geonics Limited, 2015) measures the apparent EC of soil as 
well. The EM38 is a non-contact sensor that uses electromagnetic induction to detect soil EC.  
The instrument creates an EM field then detects, records, and converts variations in this EM 
field to apparent EC as the sensor moves across the soil.  The EM38 model (MK2) used in the 
study is a dual-dipole sensor with the capacity to measure both shallow and deep soil EC 
concurrently. The horizontal dipole reacts to soil properties nearer to the surface (0.75 
meters), while the vertical dipole reacts to soil properties attached to soils at depth (1.5 
meters). The EM38 takes measurements almost continuously while towed across the field. 
 
The EM38 is highly sensitive to elements outside of the soil such as metals, atmospheric 
moisture, or nearby EM fields. The operator properly calibrated and tested the instrument 
before mapping each field, re-calibrating the EM38 every few hours to mitigate the risk of 
measurement drift as conditions changed.  
 
3.1.3.4 Aerial Imagery: The study collected aerial imagery for some of the fields in the study. 
Aerial imagery was collected with a fixed-wing UAV. The data collected were used to 
generate red light NDVI values for the fields surveyed. 
 
3.1.3.5 Yield Data: The researchers collected 3-5 years of yield data for each field according 
to industry standard. All yield data were cleaned to eliminate outliers, inliers, and data 
points in error.  
 
3.1.3.6 Elevation: The research team gathered elevation data concurrently with EC mapping.  
The on-board RTX GPS receiver recorded elevation in each field and generated elevation 
maps with a reported 4cm horizontal accuracy and 10cm vertical accuracy. 

 
3.1.4 Measured Data: The study collected georeferenced soil cores from each field in a 
stratified five acre grid pattern, resulting in 32 samples collected for each 160 acre field. In 
cases where a designated sample location was inaccessible, either a nearby location was used 
or that sample location was omitted. At each location, two soil cores were collected. The first 
core was divided into three depths, 0-15cm, 15-30cm, and 30-60cm, and analyzed for the major 
soil nutrients (NPKS) as well as OM, pH and EC at each depth. The second soil core was divided 
into four segments, 0-30cm, 30-60cm, 60-90cm, and 90-120 cm, and was analyzed for soil 
texture using the hydrometer method, as well as soil moisture content.  
 
3.2 Objective 2: Identify and evaluate protocols to delineate soil management zones based on 
multiple sources of information. The study addressed this objective using three separate 
statistical procedures. The first was a pair of correlation analyses. A global correlation matrix 
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measured the similarity of spatial patterns in pairs of mapped data layers. A second local 
correlation matrix measured the spatial relationships between layers of mapped data and 
measured soil sample data. Next, the project used PCA to gain a deeper understanding of the 
relationships between mapped layers, as well as to identify key variables for zone delineation.  
Finally, the project used cluster analysis as an objective means of creating management zones 
from these data. 
 
3.2.1 Scale and Grid Polygon Geography: The investigation used seeder width to determine an 
appropriate spatial resolution for data analysis. The upper limit on spatial resolution is 
constrained by seeder width, as this is the finest scale at which a cooperator can respond to 
field variability with their equipment. Data trials by the research group showed spatial patterns 
beginning to dissolve at a spatial resolution coarser than 2 seeder widths. The study therefore 
created a layer of grid cells sized between 1 and 2 widths of the cooperators’ seeders for each 
field.  All data collected were nested into these grid cells for analysis. 
 
3.2.2 Correlation Analysis: The project team used a correlation analysis to compare each layer 
of data to every other layer of data. SAS Analytics Software statistical procedures were used to 
assess correlations with a probability level of p<0.5 across all analyses. Pearson correlation was 
determined for each pair of variables. Two separate correlation analyses were completed. The 
first one compared every pair of mapped variables for each field and the second compared 
every layer of mapped data to each element in the measured soil sample data. 
 
3.2.3 Principal Components Analysis (PCA): The project used PCA to identify variables among 
the mapped data layers that would contribute the most to our understanding of variability in 
each field mapped. PCA reduces the number of observed interdependent variables in a large 
data set to a relatively smaller set of transformed and independent new variables. These new 
variables account for most of the variance in the observed variables and are not correlated with 
one another. For this study, PCA primarily identified the mapped data layers that represented 
the maximum amount of variability across time and space. These data layers were then used 
for creating management zones. 
 
3.2.4 Cluster Analysis: Cluster analysis is a statistical procedure for grouping similar data into 
distinct classes or clusters. Potential management zones for the project field sites were created 
with Management Zone Analyst (MZA) computer software using a fuzzy c-means unsupervised 
clustering algorithm. The clustering procedure assigns a value to each grid cell, objectively 
determining both zone boundaries and the optimal number of zones on the basis of the 
distribution of the data.  
 
 
3.3 Objective 3: Determine relationships between soil properties, soil moisture availability 
and crop yields for identified soil management zones. The project addressed many of the 
components of objective 3 using the procedures outlined for objective 2. The correlation 
matrices and PCA analysis help to understand relationships between all the layers of data 
collected. 
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3.4 Objective 4: Identify and test the top recommended management option that could be 
variably managed. The research team used five different delineation methods to divide each of 
the 10 study fields into management zones. The study then tested each of these delineation 
methods. 
  
3.4.1 Creating Management Zones: The delineation methods applied in each field were surface 
geography, grid soil sampling, historic yield, mapped EC and composite. 

Surface Geography: Zones were created using a subjective assessment of visual spatial 
differences in terrain, moisture, salinity, etc.  
Grid Soil Sampling: Soil sample nitrogen measurements were spatially interpolated using the 
kriging method. Resulting values were divided equally into three zones. 
Historic Yield: All available yield maps were normalized, then pooled to create an average 
normalized yield map. Resulting values were divided into three zones equally. 
EC: A single EM38 deep EC map was put through a cluster analysis procedure to objectively 
determine zone boundaries and number of zones. 
Composite: A single representative EM38 deep EC layer and a single representative yield 
layer were pooled and put through a cluster analysis procedure to objectively determine 
zone boundaries and number of zones. 

 
4.2 Testing Management Zones: The project used VR equipment to treat each field with a 
range of nitrogen rates at time of seeding in an RCBD trial design. The researchers collected a 
harvest yield map from the GPS monitors of each cooperator after harvest. Technicians then 
used GIS technology to “draw” each delineation method on top of this yield map. Yield 
response to nitrogen for each zone was identified by collecting yield data where a selected zone 
overlapped with a selected rate of nitrogen. Yield response curves for all zones in each 
delineation method were generated from these data. For each delineation method 2-3 
response curves were generated, each representing yield in a particular zone.  
 
The research team analyzed the response curves for each zone delineation method in two 
ways. First, the curves were assessed to determine if mean yield values were significantly 
different from one another. Zones with significantly different mean yields would indicate that 
the zones created and their soil properties have implications for productivity. Second, the 
curves were assessed to determine if the slopes were significantly different from one another. 
Curves with different slopes respond to nitrogen differently and can therefore be managed 
using different optimal rates of nitrogen. 
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4. Results, discussion and conclusions (max 8 pages) 
 
Note: Project results are the aggregation of findings obtained in ten discrete fields. Given the 
complexity and depth of the analysis, this report will not cover the specific patterns and 
responses observed in individual fields, but will focus on aggregate results. 
 
4.1 Objective 1: Evaluate two sensor-based soil mapping tools for ease of use, accuracy, 
consistency, and utility. The research team found that the EM38 was easier to use and 
produced higher quality EC data than the Veris. However, both sensors produced highly 
effective mapped EC data. EC maps from both sensors were consistent over space, time, and 
across sensors. The study also found that although EC data were dependable for mapping the 
texture and moisture of soil, they were not effective predictors of soil nutrient properties such 
as NPKS. The specific results leading the research team to these conclusions are detailed in the 
following sections. 
 
4.1. Calibration: The researchers calibrated each sensor against the manufacturer standard 
criteria. Operators closely monitored EC readings from both sensors for calibration drift, and 
mapped EC in alternating transects to aid in detection of drift. Additionally, where conditions 
changed or logistical challenges slowed the mapping of a field, the operators re-calibrated 
sensors. Highly consistent EC readings attained in different locations, times, and conditions 
indicate that field calibration protocols were effective and that the instruments performed 
according to specifications. 
 
4.2 Ease of Use. The research team gained hands on experience in the operation and 
calibration of both the Veris and EM38 EC sensors. One key difference identified was the 
EM38’s ability to produce quality EC maps under a range of conditions. The Veris, requiring 
contact with the soil, was susceptible to weaker performance due to stubble, surface debris, 
firm soil, or uneven terrain. The EM38 is lighter, easier to transport, and only requires a small 
truck or ATV to tow, whereas the Veris-MSP3 requires a tractor. The research team found 
calibration of the EM38 challenging to learn, but easy to implement. Conversely, Veris 
calibration was relatively simple, but cumbersome and time consuming to implement. 
Considering each sensor’s strengths and weaknesses, this study found the EM38 to be easier to 
operate. 
 
4.3 Accuracy Consistency and Utility: Given that accuracy, consistency, and utility are related 
and largely interdependent concepts, the project investigated all three concurrently. The 
backbone of this component of the study includes the global and local correlation analyses 
performed on spatial data for each field that examine spatial relationships between mapped 
layers and measured soil properties. 
 
4.3.1 Global Correlation: The project measured correlations between all available layers of 
mapped data for each study field. Technicians mapped each study field twice over the course of 
the project yielding nearly 20 mapped EC layers for each sensor. There were a few instances 
where mapped EC layers were omitted from analysis due to accuracy concerns. The study 
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found correlations between layers of mapped EC data to be almost universally significant and 
strong. The average Pearson correlation value (p<0.05) between EC layers was 0.69, indicating a 
large strength of association between the variables. The research team further examined 
mapped EC layers by assessing their performance over time and by profile depth. Table 1 shows 
average correlation values between mapped EC layers according to time, depth, and sensor. 
Notable observations regarding relationships by depth, time, and sensor are discussed in the 
following sections. 
 
4.3.1.1 EC by Profile Depth: The analysis showed extremely strong correlations between deep 
and shallow EM38 EC measurements mapped at one time, with an average Pearson correlation 
of 0.93. Veris readings mapped at one time also had a very high average Pearson correlation of 
0.81. When examined across time, a similar pattern is evident where EM38 shallow and deep 
correlations are slightly stronger than Veris shallow and deep correlations. Finally, deep EC 
correlations across sensors averaged 0.66 and shallow correlations averaged 0.65. This analysis 
demonstrates that relationships between shallow and deep EC readings are extremely strong, 
although slightly stronger for the EM38 than for the Veris. Ultimately, the study found little 
difference between shallow and deep EC readings from either sensor and that either would be 
effective for understanding soil variability. 
 
4.3.1.2 EC by Time: The project found that the EM38 demonstrated stronger spatial 
relationships than the Veris among EC maps gathered at separate times in the same location. 
Correlation analysis of EC data collected at separate times yielded an average Pearson value of 
0.76 for EM38 data, and 0.69 for Veris data. This indicates that spatial patterns detected were 
slightly more consistent over time for the EM38 data than for the Veris. The relationship 
between Veris data and EM38 data collected at different times yields an average correlation 
value of 0.60, demonstrating a high level of temporal consistency in mapped EC data regardless 
of the sensor used. 
 
4.3.1.3 EM38 vs Veris: The study found the EM38 to be more consistent over time, and across 
shallow and deep profile measurements. However, the gap in performance between the two 
sensors is small enough and the relationship between EC maps generated strong enough, that 
either sensor would be effective considering the parameters of this research project.  
 

4.3.2 All Mapped Data Layers: The global correlation analysis also gauged relations between all 
layers of mapped data acquired for each study field. Table 2 shows the percentage of instances 
in which each pair of mapped variables resulted in a correlation that was both significant 
(p<0.05) and strong (Pearson>0.4). The project found a highly variable network of relationships 
among mapped data layers with results at times fluctuating significantly from one field to 
another. Notable trends observed in the cases of pH and OM data, elevation data, and yield 
data are discussed below. 
 
4.3.2.1 pH and OM: The study found that correlation between mapped EC (Veris or EM38) and 
pH and OM data mapped by the Veris was rare and weak, with acceptable correlations found in 
only 7/90 instances for pH and only 3/87 instances for OM. Thus, mapped EC data could not 
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explain variability in pH and OM as mapped by the Veris, nor predict spatial patterns of those 
variables in soil.  
 
4.3.2.2 Elevation: The analysis found that mapped elevation correlated with mapped EC data in 
42% of instances, almost all of which were negative. EM38 EC data correlated strongly with 
elevation in 63% of instances, while Veris EC data did so in only 24% of instances. These results 
indicate a possible inverse relationship between EC measurements and elevation, likely 
reflecting the relationship between elevation and soil texture in many locations. The EM38 data 
exhibited this trend with greater strength and consistency than the Veris data. 
 
4.3.2.3 Yield: The analysis showed a great deal of variability in relationships between yield and 
other data layers. As an aggregate, yield correlated with EC data in roughly 20% of instances. 
This fluctuated significantly by year, however, with instances of correlation in excess of 30% for 
2010 and 2013 yield data and as low as 0% across the board for 2012 yield data. This shows 
how variable yield patterns can be from year to year. In fact, yield maps from various years only 
had strong correlations to one another in 10% of instances project-wide. Elevation correlated 
strongly with yield data in 26% of instances. This places significant limits on the capability of soil 
sensor or elevation data to predict grain yield in a given field in a given year. Although 
relationships between yield and other data were rare, both EC and elevation correlated to 
specific yield maps more often than other yield maps from the same field. This indicates that 
these data layers may be more effective predictors of grain yield than historic yield data. 
 
4.3.2 Local Correlation: The study used correlation analysis to compare mapped sensor data to 
measured soil properties. Table 3 shows the frequency of correlation between mapped EC data 
and measured soil data by identifying significant (p>0.05) and strong (Pearson>0.4) correlation 
instances. 
 
The researchers found relationships between mapped and measured data to be highly variable, 
over both location and time. The strength and frequency of correlations between mapped data 
and measured clay content and moisture indicate a significant relationship between those 
variables. This analysis suggests that correlations for most other variables were too few to 
render reliable conclusions for practical and operational purposes. 
 
The study found a relationship between mapped EC data and soil texture (especially clay), with 
strong and significant correlations in 25% of instances. Correlation with soil moisture occurred 
slightly less often at around 20% of instances. There was a weak and rare relationship between 
mapped EC and measured pH, EC, and OM in the soil. With the exception of sulfur, mapped EC 
data correlated with measured soil macronutrients (NPKS) in very few circumstances. Sulfur 
correlated with EC in the range of 25% of instances.  
 
4.3.2.1 Challenges: The intention of this analysis is to give a sense of the coarse accuracy of the 
soil sensors. The lack of on point data collection, particularly in the case of the local data, may 
place limits on the strength of this analysis. The strength of the correlations that do exist, 
however, supports the argument that Veris and EM38 EC maps are effective predictors of clay 
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content and soil moisture. This trial is better designed to examine accuracy of EC data than it is 
OM and pH data. EC data has a 60ft spatial range and does not need to be measured on point 
to be considered accurate. Whereas OM and pH (as well as NPKS) must be mapped at a higher 
resolution to effectively assess accuracy.   
 

4.2 Objective 2: Determine relationships between soil properties, soil moisture availability, 
and crop yields for identified soil management zones.  The study addresses most of the 
elements of this objective in other sections of the report. The relationships between soil 
properties, mapped variables and crop yields are closely examined in section 4.1. Performance 
of identified soil management zones in the context of both productivity and response to 
nitrogen are discussed at length in section 4.4.  
 
The study used soil samples to examine the soil properties of the management zones created. 
This analysis found that soil properties tied to management zones closely mirrored the results 
of the correlation analysis described in the summary of objective 1. Management zones built 
using EC, for example, tended to contain soil with different soil moisture and texture properties 
for each zone. The soil management zones used in this study did not, however, effectively 
differentiate soil nutrient properties. 
 
4.3 Objective 3: Identify and evaluate protocols to delineate soil management zones based on 
multiple sources of information. The project focused on two elements in developing protocols 
for zone delineation: 1) Which data sources to use, and 2) How to effectively use these data to 
create zones. PCA identified key data layers for zone delineation and cluster analysis objectively 
defined zones. 
 
4.3.1 Principal Component Analysis: The research analysts ran a PCA for each of the 10 study 
fields, incorporating all data layers available for each field. Input variables for the PCA process 
therefore differed from field to field due to subtle differences in data collected in each field. 
PCA results were quite similar for all 10 fields. The EC variable loaded strongly on the first factor 
in all instances, indicating that EC accounts for the most unique variability among the data 
layers collected and is a key variable. The specific variables loading on the second factor 
fluctuated from field to field, but most often yield data was the next most significant layer 
following EC in the PCA process. The other notable result of the field by field PCA procedure 
was that OM data occasionally loaded onto the same factor as yield. This indicates a 
relationship between the two variables where they tend to account for the same variability in 
some fields. Ultimately the PCA process objectively identified two key data layers, EC and yield, 
for zone delineation. 
 
4.3.2 Cluster Analysis: The study used cluster analysis to objectively divide input data into 
management zones. Cluster analysis groups data into clusters that have similar properties. The 
process objectively determines into which zone each datum belongs and suggests an ideal 
number of zones to create. This zone delineation strategy is specific to each individual field, 
while maintaining the rigor of an objective and repeatable process. There are a number of 
specific protocols that tailor the analysis to the specific data. The researchers, using a trial and 
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error strategy, developed an effective protocol for the input data. The study found cluster 
analysis effective for creating zones using data that were not normally distributed, such as EC, 
or for combining multiple variables. The study did not apply cluster analysis to surface 
geography or grid soil sample delineation methods as the input data in those cases were not 
raw data. Similarly, cluster analysis was not applied to yield data, as the team instead tested the 
common industry practice of using average normalized yield divided into three equal zones. 
 
4.4 Objective 4: Identify and test the top recommended management option that could be 
variably managed. The project generated response curves documenting the response of yield 
to increasing rates of nitrogen for each zone in all five different methods of zone delineation. 
The research team examined these curves to assess the effectiveness of each delineation 
method. There are two scenarios that indicate meaningful or useful zones. The first is if the 
mean yields of identified zones differ significantly. The second is if crop yield response to 
nitrogen differs for each zone. The five different zone delineation methods tested were surface 
geography, grid soil sampling, historic yield, EC and a composite of yield and EC. 
 

4.4.1 Yield Productivity of Delineated Zones: The study had reasonable success identifying 
zones that yielded differently. All five delineation methods differentiated at least two zones 
whose yields were significantly different in at least 70% of instances (Figure 1). This suggests 
that zones created by all five methods were related to soil properties with real implications for 
yield. The composite method (EC and yield) most consistently identified zones that yielded 
differently, being the only method that did not fail to differentiate regions of productivity in any 
of the research fields. The remaining four delineation methods failed to do so in at least 20% of 
cases. The grid soil sample method appeared least successful. Although this method often 
differentiated some regions of the field that produced differently, in only 20% of cases all zones 
had significant yield differences. The other four methods identified significant yield differences 
for all zones in 50% or more of instances. While all five zone delineation methods were 
reasonably effective at differentiating productivity, the composite method was most 
consistently effective. 
 
4.4.2 Yield Response of Delineated Zones: The study had limited success in identifying zones 
with differing yield responses to nitrogen. Among the 50 zone delineations tested over 10 
research fields, there was only one instance where the slopes of all the response curves were 
statistically different from one another (Figure 2). This instance occurred with the grid soil 
sample method. The research team identified statistically different response curve slopes for 2 
of 3 zones in 12% of instances. Across all zone delineations tested, 86% of instances had no 
statistically significant difference between response curves for different zones. The project 
expected to find unique responses to nitrogen in at least those zones that had significantly 
different yield means, but this was not the case. Effective yield prediction did not lead to 
effective yield response differentiation.  
 

4.4.3 Challenges The research team had a few challenges assessing effectiveness of delineated 
zones. One challenge involved selecting nitrogen rates that adhered to what cooperators were 
comfortable applying. In some cases, this limited the number and range of rates applied. 



Agriculture Funding Consortium 
Revised: May, 2015 Page 15 

However, the study found that when an ideal number and range of nitrogen rates were applied, 
there was still a very low success rate. For fields that fewer rates were applied, yield response 
curves were not statistically different even at a coarse level. It stands to reason that any 
optimal rates identified in the study would need to lie within a range that a cooperator would 
be comfortable with to be useful.  
 
4.5 Conclusion This project had a strong focus on collection and analysis of on-farm data. The 
researchers found it easy to gather large quantities of data. Converting that data into tangible 
knowledge proved more challenging. Data and analysis must provide information that is 
consistently reliable in order to be used for good decision making. The knowledge generated by 
this study provides strong guidelines for collection, analysis, and application of spatial on-farm 
data. It also places limitations on the on the ways data can facilitate good management 
decisions. The implications of the study results are summarized three sections: 1) data and soil 
variability, 2) data and yield prediction, and 3) zone delineation and VR management. 
 

4.5.1 Data and Soil Variability: The project was unable to effectively account for the variability 
of most soil properties using the data layers collected. Spatial relationships between various 
data layers were inconsistent and tended to vary from field to field. Using any one variable to 
predict the spatial pattern of another is unlikely to yield consistent or repeatable results. The 
study does not recommend using any of the data variables studied to predict variability in soil 
properties. Although mapped data such as EC, pH, OM, yield or satellite imagery are relatively 
cheap and easily attainable, this study shows that they are not effective predictors of macro-
nutrients (NPKS) in the soil.  
 
Soil EC, however, demonstrated consistent and repeatable relationships to the presence of clay 
and soil moisture in the study fields. The project found some differences between Veris and 
EM38 performance, but both produced EC maps that effectively predicted location soil texture 
and soil moisture. While other variables such as weather or management practices can change 
from year to year, EC remains relatively stable over time. Not only did the PCA highlight EC as a 
key factor in soil variability, but the correlation analysis showed EC patterns to be highly 
consistent over space and stable over time. Additionally, EC is relatively cheap, easy to acquire 
and has a longer shelf life than other variables. The research team recommends EC as an 
effective tool to better understand soil variability. 
 
4.5.2 Data and Yield Prediction: The study found spatial correlation between yield and most 
other study variables to be weak and rare. The study expected to find a relationship between 
measured soil properties and grain yield, but did not. The coarse 5-acre grid resolution of 
collected soil samples may have limited the study’s ability to detect such relationships. The 
higher resolution mapped data offered a limited, if inconsistent, improvement over soil sample 
data for yield prediction. Mapped EC performed the best when it came to yield prediction. 
However, the results were quite variable from year to year and from field to field. In fact, the 
study found yield patterns highly variable from year to year, with yield data layers rarely 
strongly correlated to one another.  
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There are a number of factors that may account for the limited correlation between yield and 
other variables. First, accurate yield data maps are difficult to collect. Limited spatial coverage, 
use of multiple combines, calibration errors, variable swath widths, or inconsistent harvest 
geography can all obfuscate yield map patterns. Second, spatial variability of yield constraints 
other than soil properties, such as localized weather events or non-uniform management 
practices can influence yield patterns. Finally, temporal variability in yield patterns themselves 
makes grain yield difficult to predict. The yield pattern for a wet year, for example, may vary 
significantly from the yield pattern for a dry year. 
 
This led the research team to conclude that accurate and consistent grain yield prediction using 
the variables studied is unlikely. The relative, if inconsistent, success of EC for yield prediction 
likely lies in the consistency of this variable. The implications of mapped EC may change over 
time with variations in weather patterns and crops grown, but the pattern is highly consistent.  
Mapped EC is a stable variable that provides a strong base for understanding soil variability.  
 
For these reasons, EC may be effective for understanding soil variability and productivity.  
Although mapped EC data could not consistently explain variability in grain yields, adding 
context through additional data layers or weather information would likely improve its 
performance. 
 
4.5.3 Zone Delineation and VR Management: The project created and tested five unique zone 
delineation strategies for each study field. The innovative use of PCA identified EC and yield as 
key variables to be used for zone delineation. Considerable effort was expended to ensure that 
delineation methods were objective and repeatable, and therefore as universal as possible in 
their application to multiple fields. The study analyzed the yield of created zones, paying 
particular attention to the mean yield and yield response to nitrogen for each zone. Although 
results varied from field to field, strong aggregate conclusions came from the analysis. 
 
The project had reasonable success at identifying zones with statistically different mean yields. 
Although all five methods were successful in this regard, the grid soil method was the least 
successful, while the yield and EC composite map was the most successful. These results 
indicate that the data collected did relate to properties in the soil with implications for yield. 
The study showed that mapped data can identify zones of productivity. The project had 
expected to encounter a larger gap in the efficacy of delineation methods than the results 
showed. For example, there was very little difference in success between the rigorous 
composite approach and the rather imprecise surface geography method. Some of the success 
of the composite method is likely due to the use of multiple variables – hedging our bets so to 
speak. Some of its success also likely comes from the identification of yield and EC as key 
variables.  
 
However, the project was largely unsuccessful in identifying zones that had unique responses to 
nitrogen. Response curve slopes were only statistically different for all zones identified in one 
instance across all the fields and delineation methods tested. This indicates that grain yields in 
the zones identified did not respond differently to nitrogen. Therefore, there was no 
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statistically unique optimal nitrogen rate identified for each zone. Although meaningful zones 
can be identified, it appears unlikely that a consistent and effective nitrogen application 
strategy could be developed to manage each zone optimally and uniquely. 
 

4.5.4 Summary: The study determined that variable rate technology requires a variable 
approach. Temporal and spatial variability in soil properties, yield, weather and other factors 
produce a complex and dynamic system that is difficult to understand, predict and manage. 
Additionally, every field is unique and responds differently to various management strategies. 
There is no magic formula or universal approach that can consistently identify meaningful and 
manageable zones. 
 
The project advises VR practitioners to evaluate zone delineation methods with the on-farm 
research design used in this project. This allows for an objective evaluation of any VR 
management approach in any field. When developing a VR strategy, design zones using an 
objective, and therefore repeatable technique so that results attained are also repeatable. The 
project suggests that in most cases, mapped EC would be the most useful data for 
understanding the variability of soil properties. Yield data is also an effective variable, but its 
efficacy can be limited by data quality and temporal variability in yield patterns. Producers are 
advised to take meticulous care to ensure yield data are accurate and dependable.  
 
Finally, the analysis had minimal success identifying unique, optimal nitrogen rates for a 
number of strategies in 10 different fields in Alberta. These results challenge the validity and 
effectiveness of universal approaches to VR nitrogen management. The dynamic nature of crop 
production, temporal variability in weather, difficulties in measuring soil variability, and the 
scale at which we can respond to variability all challenge our capacity to manage soil variability 
in a meaningful way. More academic work is needed in this area. Until then, it would be difficult 
to recommend variable rate nitrogen application as a consistently effective crop management 
strategy. 
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6 Project team (max ½ page) 
Describe the contribution of each member of the R&D team to the functioning of the 
project.  Also describe any changes to the team which occurred over the course of the 
project. 

• Ken Coles, M.Sc. P. Ag. (General Manager and Team Leader) 
o Ken provided overall leadership and coordination of the project as a Team 

Leader; facilitated the project team for successfully completing the project; 
prepared extension material for information and dissemination purposes and 
made presentations in producers’ gatherings and conferences 

• Dr. Muhammad Akbar, P. Ag. P.Eng. (Research Director & Geomatics/Precision Ag 
Scientist) 

o Dr. Akbar provided  scientific and technical supervision of the project; provided 
professional advice and support on the commissioning and operation of soil EC 
sensors; assisted in designing and conducting field trials; conducted data 
analysis, interpretation and reporting; prepared presentations, interim and final 
project reports on the study’s findings and mentored project team in all aspects 
of the application of geomatics and spatial and statistical analysis techniques 
pertinent to the project 

• Lewis Baarda, M.Sc. (GIS Analyst) 
o Lewis supervised and coordinated all the field operations and data gathering 

activities; conducted data compiling and analysis; assisted in preparation of final 
project report; prepared extension material for information and dissemination 
purposes and made presentations in producers’ gatherings and conferences  

http://www.geonics.com/pdfs/downloads/catalogue.pdf
http://www.veristech.com/pdf_files/Manuals/OM18/OM18-MSP3.pdf
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7 Benefits to the industry (max 1 page; respond to sections a) and b) separately) 
a) Describe the impact of the project results on the Alberta or western Canadian 

agriculture and food industry (results achieved and potential short-term, medium-term 
and long-term outcomes). 

 
The project results increase chances for producer success when developing their own VR 
strategies and provide tools to evaluate that strategy. The study produced strong guidelines for 
data to use and how to delineate management zones that will improve a producer’s odds of 
establishing meaningful and manageable zones. Additionally, the on-farm research model 
developed gives any VR practitioner the necessary tools to evaluate the efficacy of VR strategies 
on their own fields. The study found that universal strategies for zone delineation were largely 
ineffective. In the short-term, this should initiate work into improving existing formulaic 
strategies and increasing ability to tailor VR strategies for specific fields. 
 
The study contributed to a better understanding of spatial relationships between different 
layers of data collected in a number of fields in Alberta. More research in this area is sorely 
needed in the medium-term. The study found many layers, including yield, to be quite variable, 
and thus difficult to predict. Unpredictable impacts on crop production, such as weather and its 
relationship to in-field variability, need further exploration. Crop production is so dynamic with 
so much spatial and temporal variability, that it is unlikely to either predict yield or create 
manageable spatial zones consistently with existing techniques. A long-term paradigm shift 
where field uniqueness gets more focus and an effective evaluation tool is embedded into VR 
strategies would improve the likelihood of developing techniques with measurable benefits. 
 

b) Quantify the potential economic impact of the project results (e.g., cost-benefit analysis, 
potential size of market, improvement in efficiency, etc.). 
 

This study begs for close scrutiny of VRT strategies that can cost between $4 and $15/acre for 
mapping, zone delineation, and prescription writing. Study results showed the VR strategies 
tested mostly unable to identify unique optimal nitrogen rates for zones identified. It is unlikely 
that the strategies tested would help a producer reduce nitrogen inputs and associated costs. 
Considering VRT consultation costs represent a substantial investment, producers could use the 
study template to calculate ROI. The study provides an effective template for unbiased 
evaluation of this investment by any producer with VRT capability. Additional costs would 
include investment in VR equipment, training and qualified labour. 
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8 Contribution to training of highly qualified personnel (max ½ page) 
Specify the number of highly qualified personnel (e.g., students, post-doctoral fellows, 
technicians, research associates, etc.) who were trained over the course of the project. 

 
Staff from FS and SARDA gained invaluable knowledge regarding the use and capability 
of soil EC sensors and about the complexities, advantages and limitation of these 
technologies. Over the 3-year study, Farming Smarter employed the following people 
who were engaged in many different components of this project: 

• About six post-secondary students 

• Two interns 

• One international student 

• Two Masters 

• One PhD 
 
9 Knowledge transfer/technology transfer/commercialisation (max 1 page) 

Describe how the project results were communicated to the scientific community, to 
industry stakeholders, and to the general public. Please ensure that you include descriptive 
information, such as the date, location, etc. Organise according to the following categories 
as applicable: 

a) Scientific publications (e.g., scientific journals); attach copies of any publications as an 
appendix to this final report 

• No scientific publications to this point 
b) Industry-oriented publications (e.g., agribusiness trade press, popular press, etc.); attach 

copies of any publications as an appendix to this final report 

• Farming Smarter Magazine, Fall 2014, 16-17 

• Farming Smarter Magazine, Spring 2016, 18-19 

• Top Crop Manager, Western Edition, March 2016, 20-25 

• The Western Producer, March 3, 2016, 75 
c) Scientific presentations (e.g., posters, talks, seminars, workshops, etc.); attach copies of 

any presentations as an appendix to this final report 

• No scientific presentations to this point 
d) Industry-oriented presentations (e.g., posters, talks, seminars, workshops, etc.); attach 

copies of any presentations as an appendix to this final report 

• FS AGM; Feb 28, 2013 – Ken Coles presentation (61 attendees) 

• Field School; June 25-27, 2013 – Ken Coles presentation (~ 300 attendees) 

• SARDA July 10, 2013 - open house (3 attendees) 

• FS Conference; Dec 3-4, 2013  - Lewis Baarda presentation (200 attendees, 300 
registrants) 

• FS AGM; Feb 27, 2014 – Ken Coles VRT presentation (61 attendees) 

• Field School; June 24-26, 2014 – Field implementation of on-farm research 
protocol was demonstrated (over 250 attendees) 

• One-to-one meetings; March - June 2014 – Ken Coles, Lewis Baarda, and Adil 
Akbar continued to share knowledge from the VRT project (over 50 attendees) 
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• FS Conference; Dec 8-9, 2015 – Lewis Baarda full VRT results (288 attendees) 

• Tactical Farming Conference; Feb 10-11 2016 – Lewis Baarda and Adil Akbar 
VRT techniques and results (75 attendees) 

• FS AGM; Feb 25, 2016 – Lewis Baarda VRT key findings (65 attendees) 

• Canadian Association of Farm Advisors;  Apr 28, 2016 – Lewis Baarda 
innovations in precision agriculture (15 attendees) 

e) Media activities (e.g., radio, television, internet, etc.) 

• Project was reported and discussed by Ken Coles in numerous video clips posted 
on the Farming Smarter and YouTube websites. Farming Smarter with partner 
applied research associations also continued to communicate the findings of this 
project in 2015 to the producers and the agricultural industry via extension and 
government websites, such as www.farmingsmarter.com, www.agric.gov.ab.ca, 
through talks and tours during Farming Smarter Conference, Agronomy Update, 
Crop Walks, Diagnostic Field School, as well as from other outlets including 
Farming Smarter magazine, Newsletters, social media and the popular press. 
Farming Smarter’s staff was also be available for advice upon request on one-to-
one basis. 

f) Any commercialisation activities or patents 

• None 
N.B.: Any publications and/or presentations should acknowledge the contribution of each 
of the funders of the project, as per the investment agreement.  
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Section D: Project resources 

1. Provide a detailed listing of all cash revenues to the project and expenditures of project 
cash funds in a separate document certified by the organisation’s accountant or other 
senior executive officer, as per the investment agreement. Revenues should be identified 
by funder, if applicable. Expenditures should be classified into the following categories: 
personnel; travel; capital assets; supplies; communication, dissemination and linkage (CDL); 
and overhead (if applicable). 

2. Provide a justification of project expenditures and discuss any major variance (i.e., ± 10%) 
from the budget approved by the funder(s).  

3. Resources: 
Provide a list of all external cash and in-kind resources which were contributed to the 
project. 

 

Total resources contributed to the project 

Source Amount 
Percentage of total project 

cost 

Agriculture Funding Consortium 172550 % 

Other government sources: Cash 61567 % 

Other government sources: In-kind 5075 % 

Industry: Cash 30728 % 

Industry: In-kind 76892 % 

Total Project Cost 346842 100% 

 

External resources (additional rows may be added if necessary) 

Government sources 

Name (no abbreviations unless stated in Section A3) Amount cash Amount in-kind 

Alberta Agriculture  5075 

Alberta Opportunity Fund 43096  

Municipalities of Alberta 18469  

Industry sources 

Name (no abbreviations unless stated in Section A3) Amount cash Amount in-kind 

A&L Laboratories  30000 

Veris  9000 

Alberta Canola Producers 15000  

Alberta Barley Commission 7756  

Producer Co-operators  22891 

Precision Ag Consulting Companies  15000 

   

   

Year Source Type Personnel Travel 
Capital 

Assets 
Supplies CDL* Overhead Total/year 

1 ACPC Cash      15000 15000 
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2012 

Gov’t 

Cash        

In-

kind 

       

Industry 

Cash        

In-

kind 

       

Total Year 1 
     15000 15000 

2 

2013 

ACPC Cash 29398 1924  1497 3849   8329 44997 

Gov’t 

Cash 10385    680     529 1360   7064 20018 

In-

kind 

    1650    1650 

Industry 

Cash   5188    340     264    679   3529 10000 

In-

kind 

10500     14500 25000 

Total Year 2 
55471 2944  2290 7538 33422 101665 

3 
2014 

ACPC Cash 30133 1972  1535 3945 18813 56398 

Gov’t 

Cash 10644   697    542 1394   7241 20518 

In-

kind 

    1691    1691 

Industry 

Cash   5318   348    271   696   3617 10250 

In-

kind 

10763     14863 25626 

Total Year 3 56858 3017  2348 7726 44534 114483 

4 
2015 

ACPC Cash 30887 2022  1573 4044 17629 56155 

Gov’t 

Cash 10911   714    556 1428   7422 21031 

In-

kind 

       1734   1734 

Industry 

Cash   5451   357    278   714   3708 10508 

In-

kind 

11032     15234 26266 

Total Year 4 58281 3093  2407 6186 45727 115694 

            Grand Total 
170610 9054  7045 21450 138683 346842 
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Section E: Research Team Signatures and Authorised Representative’s 
Approval 

 

The Principal Investigator and an authorised representative from the Principal Investigator’s 
organisation of employment MUST sign this form.  
 
Research team members and an authorised representative from their organisation(s) of 
employment MUST also sign this form.   
 
By signing as an authorised representative of the Principal Investigator’s employing 
organisation and/or the research team member’s(s’) employing organisation(s), the 
undersigned hereby acknowledge submission of the information contained in this final report 
to the funder(s). 
 

Principal Investigator 

 

Principal Investigator 

Name: 
Ken Coles, M.Sc. P.Ag 

Title/Organisation: 
General Manager/Farming Smarter 
Association, Lethbridge 

Signature: 

 

Date: 
2016-06-03 

Principal Investigator’s Authorised Representative’s Approval 

Name: 
 

Title/Organisation: 
 

Signature: 
 

Date: 
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Section F: Suggested reviewers for the final report 

Provide the names and contact information of four potential reviewers for this final report. The 
suggested reviewers should not be current collaborators. The Agriculture Funding Consortium 
reserves the right to choose other reviewers. Under Section 34 of the Freedom of Information 
and Protection Act (FOIP) reviewers must be aware that their information is being collected and 
used for the purpose of the external review. 

Reviewer #1 

Name: 

Position: 

Institution: 

Address: 

Phone Number: 

Fax Number: 

Email Address: 

Reviewer #2 

Name: 

Position: 

Institution: 

Address: 

Phone Number: 

Fax Number: 

Email Address: 

Reviewer #3 

Name: 

Position: 

Institution: 

Address: 

Phone Number: 

Fax Number: 

Email Address: 
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List of Appendices Attached 

 

Appendix A: Tables and Figures 

 

Table 1: Average Pearson Correlation Values Between Mapped EC Layers 
 
Table 2: Percentage of Instances in Which Correlations Between Data Layers Were Both 
Significant (p<0.05) and Strong (Pearson>0.4).  
 
Table 3: Frequency and Percentage of Correlations Between Mapped EC Data and Measured 
Soil Properties 
 
Figure 1: Success rate and performance comparison of the five zone delineation methods 
investigated in this study for identifying within-field zones of different yield potentials 
 
Figure 2: Performance comparison of the five zone delineation methods with respect of the 
success rate for showing yield response to nitrogen fertilizer 
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Table 1: Average Pearson Correlation Values Between Mapped EC Layers 
 

    Time 1 Time 2 

    EM38 
Deep 

EM38 
Shallow 

Veris 
Deep 

Veris 
Shallow 

EM38 
Deep 

EM38 
Shallow 

Veris 
Deep 

Veris 
Shallow 

    
Ti

m
e

 1
 

EM38 Deep   0.93 0.64 0.60 0.80 0.77 0.61 0.56 

EM38 
Shallow 

0.93   0.67 0.67 0.74 0.73 0.63 0.60 

Veris Deep 0.64 0.67   0.82 0.61 0.60 0.65 0.66 

Veris 
Shallow 

0.60 0.67 0.82   0.56 0.61 0.69 0.76 

Ti
m

e
 2

 

EM38 Deep 0.80 0.74 0.61 0.56   0.93 0.66 0.53 

EM38 
Shallow 

0.77 0.73 0.60 0.61 0.93   0.69 0.64 

Veris Deep 0.61 0.63 0.65 0.69 0.66 0.69   0.81 

Veris 
Shallow 

0.56 0.60 0.66 0.76 0.53 0.64 0.81   

 

 

Table 2: Percentage of Instances in Which Correlations Between Data Layers Were Both 
Significant (p<0.05) and Strong (Pearson>0.4)  

  
EM38 

Shallow  
EM38 
Deep 

Veris 
EC 

Shallow 

Veris 
EC 

Deep 
pH OM Elevation 

Yield 
2010 

Yield 
2011 

Yield 
2012 

Yield 
2013 

Yield 
2014 

Total 
Yield   

EM38 
Shallow  

86% 97% 94% 97% 5% 0% 63% 29% 17% 0% 31% 10% 19% 

EM38 
Deep 

  100% 90% 90% 6% 4% 64% 17% 33% 0% 22% 11% 14% 

Veris EC 
Shallow 

    100% 100% 11% 6% 25% 33% 0% 0% 38% 14% 21% 

Veris EC 
Deep 

      100% 8% 4% 24% 44% 14% 0% 21% 40% 21% 

pH         29% 11% 13% 20% 25% 0% 38% 43% 24% 

OM           17% 15% 0% 25% 11% 0% 11% 9% 

Elevation               25% 50% 0% 33% 40% 26% 

Yield 2010                 0% 50% 0% 50%   

Yield 2011                   25% 0% 0%   

Yield 2012                     0% 0%   

Yield 2013                       0%   

Yield 2014                           

Total Yield 
                        

10% 
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Table 3: Frequency and Percentage of Correlations Between Mapped EC Data and Measured 
Soil Properties 

EC Sensor 
Profile 
depth 

Statistics C
la

y 

Sa
n

d
 

Si
lt

 

M
o

is
tu

re
 

EC
 

O
M

 

p
H

 

N
it

ro
ge

n
 

P
h

o
sp

h
o

ru
s 

P
o

ta
ss

iu
m

 

Su
lf

u
r 

EM38 Deep Correlations 11 9 9 7 4 5 5 2 1 1 10 

    Percentage 29% 24% 24% 18% 11% 13% 13% 5% 3% 3% 26% 

  Shallow Correlations 10 8 8 9 5 4 4 3 0 2 10 

    Percentage 26% 21% 21% 24% 13% 11% 11% 8% 0% 5% 26% 

Veris Deep Correlations 9 9 9 6 8 2 5 2 1 4 9 

    Percentage 24% 24% 24% 16% 21% 5% 13% 5% 3% 11% 24% 

  Shallow Correlations 9 6 6 7 8 2 5 1 1 3 9 

    Percentage 24% 16% 16% 18% 21% 5% 13% 3% 3% 8% 24% 

 

 

 

 

 

 
Figure 1: Success rate and performance comparison of the five zone delineation methods 
investigated in this study for identifying within-field zones of different yield potentials. 
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Figure 2. Performance comparison of the five zone delineation methods with respect of the 

success rate for showing yield response to nitrogen fertilizer. 
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1. Farming Smarter Magazine, Fall 2014, 16-17 
2. Farming Smarter Magazine, Spring 2016, 18-19 
3. Top Crop Manager, Western Edition, March 2016, 20-25 
4. The Western Producer, March 3, 2016, 75 
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