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Section A: Project overview

1. Project number: 2012F035R

2. Project title: Understanding Soil Variability for Effective Zone Management in Precision
Agriculture —an evaluation of sensor based soil mapping tools

3. Abbreviations: Define ALL abbreviations used.

Electrical Conductivity (EC); EM38-MK2 (EM38); Veris-MSP3 (Veris); All Terrain Vehicle (ATV);
Nitrogen, Phosphorus, Potassium, Sulphur (NPKS); Farming Smarter (FS); Variable Rate (VR); Smoky
Applied Research and Demonstration Association (SARDA); Normalized Difference Vegetation Index
(NDVI); Power of Hydrogen (pH); Organic Matter (OM); Electromagnetic (EM); Unmanned Aerial
Vehicle (UAV); Principle Components Analysis (PCA); Management Zone Analyst (MZA); Global
Positioning System (GPS); Geographic Information System (GIS); Randomized Complete Block Design
(RCBD); Near Infrared (NIR); Return on Investment (ROI)

Precision Ag, Site-specific management, Electromagnetic induction sensors, EM38, Veris, On-farm
research, Soil variability

4. Project start date: 2012/03/19

. Project completion date: 2015/10/31

5
6. Final report submission date: 2016/01/04
7. Research and development team data

a) Principal Investigator: (Requires personal data sheet (refer to Section 14) only if
Principal Investigator has changed since last report.)

Name Institution

Ken Coles, M.Sc, P.Ag Farming Smarter Association, Lethbridge

b) Research team members (List all team members. For each new team member, i.e.,
joined since the last report, include a personal data sheet. Additional rows may be added
if necessary.)

Name Institution

Muhammad (Adil) Akbar, Ph.D., P.Ag., P.Eng. Farming Smarter Association, Lethbridge
Lewis Baarda, M.Sc. Farming Smarter Association, Lethbridge
Dennis Dey Independent

Vance Yaremko SARDA

Curt Walker Ag Viser
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Section B: Non-technical summary (max 1 page)

Farming Smarter initiated this study to compare performances of two soil EC sensors, EM38-
MK2 (EM38) and Veris MSP3 (Veris). The study assessed soil EC mapping as a low cost
alternative to grid soil sampling for estimating in-field soil variability. Additionally, the study
assessed the capacity of soil sensors as well as other layers of mapped data to create zones for
variable rate management applications.

The study showed that EM38 and Veris performance is accurate and consistent over both time
and space. Soil EC maps from both sensors were found to be strong indicators of the presence
of clay and soil moisture. However, the study revealed that mapped EC data could not be used
for a direct estimation of the spatial distribution of plant macro-nutrients (NPKS).

The project tested five different zone delineation methods in each of the 10 fields studied.
Zones were delineated using surface geography, grid soil samples, historic yield maps, EC, and
composite (yield + EC) methods. All five methods had some level of success at identifying
regions that yielded differently from one another. The composite (yield + EC) method was the
most consistently effective at differentiating zones of productivity. However, the study was not
able to identify a unique yield response to nitrogen for the zones identified. In other words, the
optimal rates of nitrogen identified for different zones were not statistically different from one
another. The upshot is that although zones derived from various data sources identified regions
with consequence for yield, the study could not consistently identify an effective variable
nitrogen management strategy for these zones. The study shows that variable rate technology
requires a variable approach; there is not a universal method that will be effective in all
circumstances. The zone delineation techniques tested had varying levels of success in different
fields. Producers should be prepared to develop a specific VR strategy for each field, and are
advised to evaluate strategies using methods developed by FS in this study.

This project provides a methodology for creating and testing management zones for VR
practitioners. The study also challenges the viability of a formulaic approach to zone
delineation and management. These study results provide producers information to make
better decisions around investment on equipment or services for VR technology
implementation. For those producers using VR technology, this study offers new guidelines on
choosing an appropriate VR strategy and provides a method for producers to assess the efficacy
of any particular strategy.
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Section C: Project details

1. Background (max 1 page)

That soil variability exists within fields and can cause varying effects on crop yield is well known.
Intensive sampling of soil properties can provide a useful description of the variation in soil
properties, but carries a prohibitive cost. The recent confluence of GPS technology, soil sensors,
and improved data management offers the ability to efficiently and precisely map certain soil
properties within fields. However, we need a better understanding of crop production
implications and response to variably managed inputs to benefit from these data.

Precision agriculture consulting companies typically use satellite images, historical yield maps,
or terrain analysis to delineate areas in a field likely to have similar soil properties and response
to management. Then they use representative soil samples to characterize different zones. This
approach is efficient and widely used. However, questions regarding the accuracy and
effectiveness of delineated zones require continued evaluation and improvement of this
approach.

EC sensors provide one additional layer of data to improve zone delineation, crop response
predictions, and prescriptions. Electromagnetic induction can map field variability in soil salinity
and texture and may also detect variation in other soil properties (Corwin and Plant 2005;
Triantafilis and Lesch 2005). The EM38 (www.geonics.com) and Veris (www.veristech.com) are
the most widely used commercially available instruments. The EM38 instrument does not
require soil-to-instrument contact and can quickly obtain readings with minimal disturbance.
The Veris instrument uses soil-to-instrument contact to map EC. Recently-introduced models of
the Veris machine also measure soil variability in organic matter (OM) and pH.

Recent work in Australia demonstrated that EM38 measurements and soil sampling can map
fields based on soil factors that constrained yield (Taylor et al. 2007; Dang et al. 2011). The
proposed framework to estimate the monetary value of site-specific management options
included: (i) identification of potential management classes from EM38 measurements; (ii)
measurement of the soil attributes generally associated with soil constraints in the region; (iii)
grain yield monitoring; and (iv) simple on-farm experiments. This study used a similar
framework to evaluate the value of sensor-based soil mapping tools for Alberta.
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2. Objectives and deliverables (max 1 page)

2.1 Objectives

e Objective 1: Evaluate two sensor-based soil mapping tools (EM38-MK2, Veris-MSP3) for
ease of use, accuracy, consistency, and utility

* Objective 2: Determine relationships between soil properties, soil moisture availability
and crop yields for identified soil management zones

e Objective 3: Identify and evaluate protocols to delineate soil management zones based
on multiple sources of information (farmer knowledge, yield maps, topography, remote
sensing, soil mapping tools)

e Objective 4: |dentify and test the top recommended management option for variable
management

e Objective 5: Develop and deliver information about soil mapping tools and how best to
use them to producers through a variety of communication mediums

2.2 Deliverables

Annual and final report based on findings:

e Recommend method(s) to obtain and use soil sensor maps to develop variable
management prescriptions for agricultural fields in Alberta

e Estimate accuracy of sensors for different soil properties

e Estimate improvement in understanding of field variability in crop yields, soil moisture
availability and crop water use efficiency through information derived from soil sensor
maps

e |Initial assessment of top variable management recommendations

Communication of the study’s findings:

e Websites: www.farmingsmarter.com, www.areca.ab.ca, www.agric.gov.ab.ca

e Talks and tours: Western Canadian Precision Ag Conference, Farming Smarter
Conference, Agronomy Update, Plot Hops, Farming Smarter Field School

e Other outlets: Farming Smarter magazine, newsletters, social media and popular press
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3. Research design and methodology (max 4 pages)

3.1 Objective 1: Evaluate two sensor-based soil mapping tools (EM38-MK2, Veris-MSP3) for
ease of use, accuracy, consistency and utility. The project evaluated the two soil sensors by
using them to map agricultural fields and test the data. Recognizing that each field is unique,
this project treated each study field as its own trial. Please note that the unique nature of each
field occasionally necessitated subtle deviations in trial implementation. The research team
gained hands-on experience in the field operation and calibration of the Veris and EM38 soil
sensors.

3.1.1 Site Selection: The team selected ten trial fields from cooperators working closely with FS
in Southern Alberta and with SARDA in the Peace River region in northern Alberta. We insisted
that cooperators have the capacity for VR application of nitrogen while seeding as well as yield
mapping at harvest.

3.1.2 Data Collection: The research team collected two types of data from each field. Mapped
data are the georeferenced readings gathered from soil sensors or UAVs. Measured data are
lab analyzed measurements of soil properties from physically sampled soil cores. Technicians
collected both mapped and measured data concurrently at two separate times for each field.

3.1.3 Mapped Data: Mapped data collected included Veris (EC pH and OM), EM38 (EC), aerial
imagery (NDVI), yield maps, and elevation.

3.1.3.1 EC Data: The research team conducted EC mapping only when soil moisture levels
were normal and the temperature above freezing to protect against collection of poor or
inaccurate data. Both sensors were operated together, the Veris attached to a tractor, and
the EM38 in a plastic sled towed at a reasonable distance to avoid proximity to metals. The
study mapped fields in 20 meter transects, a standard practice for soil EC mapping. An
alternating transect mapping pattern allowed the operator to identify drift in measurement
and ensure proper data collection.

3.1.3.2 Veris-MSP3: The Veris-MSP3 (Veris Technologies, 2015) is a tractor mounted sensor
whose primary function in agriculture is to measure the apparent EC of soil. The Verisis a
contact-based EC sensor and has three pairs of coulters designed to maintain contact with
the soil. An electric current passes through the soil between each pair to measure the
resistivity of the soil, which is then converted to an apparent EC value. The coulters are
arranged so that the machine can measure EC at both 0.75 and 1.5 meter depths
concurrently.

The Veris model (MSP3) used in this study can also collect OM and pH data. An optical
sensor located at the rear of the machine measures OM by gauging soil reflectance in both
visible and near infrared (NIR) wavelengths. Darker soil gathers higher OM readings and
lighter soil gathers lower OM readings. The Veris collects soil pH data by physically digging
into the soil and gathering surface soil samples on the go. A pair of probes measure and
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record the pH of soil samples then rinse themselves clean prior to the next sample. This
sensor is not continuous; it takes a reading about every 30 seconds. The EC and OM sensors
on the other hand are essentially continuous, providing a much denser coverage of mapped
data. Operators tested and properly calibrated all three Veris sensors before mapping each
field.

3.1.3.3 EM38-MK2: The EM38 (Geonics Limited, 2015) measures the apparent EC of soil as
well. The EM38 is a non-contact sensor that uses electromagnetic induction to detect soil EC.
The instrument creates an EM field then detects, records, and converts variations in this EM
field to apparent EC as the sensor moves across the soil. The EM38 model (MK2) used in the

study is a dual-dipole sensor with the capacity to measure both shallow and deep soil EC
concurrently. The horizontal dipole reacts to soil properties nearer to the surface (0.75
meters), while the vertical dipole reacts to soil properties attached to soils at depth (1.5
meters). The EM38 takes measurements almost continuously while towed across the field.

The EM38 is highly sensitive to elements outside of the soil such as metals, atmospheric
moisture, or nearby EM fields. The operator properly calibrated and tested the instrument
before mapping each field, re-calibrating the EM38 every few hours to mitigate the risk of
measurement drift as conditions changed.

3.1.3.4 Aerial Imagery: The study collected aerial imagery for some of the fields in the study.
Aerial imagery was collected with a fixed-wing UAV. The data collected were used to
generate red light NDVI values for the fields surveyed.

3.1.3.5 Yield Data: The researchers collected 3-5 years of yield data for each field according
to industry standard. All yield data were cleaned to eliminate outliers, inliers, and data
points in error.

3.1.3.6 Elevation: The research team gathered elevation data concurrently with EC mapping.
The on-board RTX GPS receiver recorded elevation in each field and generated elevation
maps with a reported 4cm horizontal accuracy and 10cm vertical accuracy.

3.1.4 Measured Data: The study collected georeferenced soil cores from each field in a
stratified five acre grid pattern, resulting in 32 samples collected for each 160 acre field. In
cases where a designated sample location was inaccessible, either a nearby location was used
or that sample location was omitted. At each location, two soil cores were collected. The first
core was divided into three depths, 0-15cm, 15-30cm, and 30-60cm, and analyzed for the major
soil nutrients (NPKS) as well as OM, pH and EC at each depth. The second soil core was divided
into four segments, 0-30cm, 30-60cm, 60-90cm, and 90-120 cm, and was analyzed for soil
texture using the hydrometer method, as well as soil moisture content.

3.2 Objective 2: Identify and evaluate protocols to delineate soil management zones based on

multiple sources of information. The study addressed this objective using three separate
statistical procedures. The first was a pair of correlation analyses. A global correlation matrix

Agriculture Funding Consortium
Revised: May, 2015 Page 7



measured the similarity of spatial patterns in pairs of mapped data layers. A second local
correlation matrix measured the spatial relationships between layers of mapped data and
measured soil sample data. Next, the project used PCA to gain a deeper understanding of the
relationships between mapped layers, as well as to identify key variables for zone delineation.
Finally, the project used cluster analysis as an objective means of creating management zones
from these data.

3.2.1 Scale and Grid Polygon Geography: The investigation used seeder width to determine an
appropriate spatial resolution for data analysis. The upper limit on spatial resolution is
constrained by seeder width, as this is the finest scale at which a cooperator can respond to
field variability with their equipment. Data trials by the research group showed spatial patterns
beginning to dissolve at a spatial resolution coarser than 2 seeder widths. The study therefore
created a layer of grid cells sized between 1 and 2 widths of the cooperators’ seeders for each
field. All data collected were nested into these grid cells for analysis.

3.2.2 Correlation Analysis: The project team used a correlation analysis to compare each layer
of data to every other layer of data. SAS Analytics Software statistical procedures were used to
assess correlations with a probability level of p<0.5 across all analyses. Pearson correlation was
determined for each pair of variables. Two separate correlation analyses were completed. The
first one compared every pair of mapped variables for each field and the second compared
every layer of mapped data to each element in the measured soil sample data.

3.2.3 Principal Components Analysis (PCA): The project used PCA to identify variables among
the mapped data layers that would contribute the most to our understanding of variability in
each field mapped. PCA reduces the number of observed interdependent variables in a large
data set to a relatively smaller set of transformed and independent new variables. These new
variables account for most of the variance in the observed variables and are not correlated with
one another. For this study, PCA primarily identified the mapped data layers that represented
the maximum amount of variability across time and space. These data layers were then used
for creating management zones.

3.2.4 Cluster Analysis: Cluster analysis is a statistical procedure for grouping similar data into
distinct classes or clusters. Potential management zones for the project field sites were created
with Management Zone Analyst (MZA) computer software using a fuzzy c-means unsupervised
clustering algorithm. The clustering procedure assigns a value to each grid cell, objectively
determining both zone boundaries and the optimal number of zones on the basis of the
distribution of the data.

3.3 Objective 3: Determine relationships between soil properties, soil moisture availability
and crop vields for identified soil management zones. The project addressed many of the
components of objective 3 using the procedures outlined for objective 2. The correlation
matrices and PCA analysis help to understand relationships between all the layers of data
collected.
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3.4 Objective 4: Identify and test the top recommended management option that could be
variably managed. The research team used five different delineation methods to divide each of
the 10 study fields into management zones. The study then tested each of these delineation
methods.

3.4.1 Creating Management Zones: The delineation methods applied in each field were surface
geography, grid soil sampling, historic yield, mapped EC and composite.
Surface Geography: Zones were created using a subjective assessment of visual spatial
differences in terrain, moisture, salinity, etc.
Grid Soil Sampling: Soil sample nitrogen measurements were spatially interpolated using the
kriging method. Resulting values were divided equally into three zones.
Historic Yield: All available yield maps were normalized, then pooled to create an average
normalized yield map. Resulting values were divided into three zones equally.
EC: A single EM38 deep EC map was put through a cluster analysis procedure to objectively
determine zone boundaries and number of zones.
Composite: A single representative EM38 deep EC layer and a single representative yield
layer were pooled and put through a cluster analysis procedure to objectively determine
zone boundaries and number of zones.

4.2 Testing Management Zones: The project used VR equipment to treat each field with a
range of nitrogen rates at time of seeding in an RCBD trial design. The researchers collected a
harvest yield map from the GPS monitors of each cooperator after harvest. Technicians then
used GIS technology to “draw” each delineation method on top of this yield map. Yield
response to nitrogen for each zone was identified by collecting yield data where a selected zone
overlapped with a selected rate of nitrogen. Yield response curves for all zones in each
delineation method were generated from these data. For each delineation method 2-3
response curves were generated, each representing yield in a particular zone.

The research team analyzed the response curves for each zone delineation method in two
ways. First, the curves were assessed to determine if mean yield values were significantly
different from one another. Zones with significantly different mean yields would indicate that
the zones created and their soil properties have implications for productivity. Second, the
curves were assessed to determine if the slopes were significantly different from one another.
Curves with different slopes respond to nitrogen differently and can therefore be managed
using different optimal rates of nitrogen.
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4. Results, discussion and conclusions (max 8 pages)

Note: Project results are the aggregation of findings obtained in ten discrete fields. Given the
complexity and depth of the analysis, this report will not cover the specific patterns and
responses observed in individual fields, but will focus on aggregate results.

4.1 Objective 1: Evaluate two sensor-based soil mapping tools for ease of use, accuracy,
consistency, and utility. The research team found that the EM38 was easier to use and
produced higher quality EC data than the Veris. However, both sensors produced highly
effective mapped EC data. EC maps from both sensors were consistent over space, time, and
across sensors. The study also found that although EC data were dependable for mapping the
texture and moisture of soil, they were not effective predictors of soil nutrient properties such
as NPKS. The specific results leading the research team to these conclusions are detailed in the
following sections.

4.1. Calibration: The researchers calibrated each sensor against the manufacturer standard
criteria. Operators closely monitored EC readings from both sensors for calibration drift, and
mapped EC in alternating transects to aid in detection of drift. Additionally, where conditions
changed or logistical challenges slowed the mapping of a field, the operators re-calibrated
sensors. Highly consistent EC readings attained in different locations, times, and conditions
indicate that field calibration protocols were effective and that the instruments performed
according to specifications.

4.2 Ease of Use. The research team gained hands on experience in the operation and
calibration of both the Veris and EM38 EC sensors. One key difference identified was the
EM38'’s ability to produce quality EC maps under a range of conditions. The Veris, requiring
contact with the soil, was susceptible to weaker performance due to stubble, surface debris,
firm soil, or uneven terrain. The EM38 is lighter, easier to transport, and only requires a small
truck or ATV to tow, whereas the Veris-MSP3 requires a tractor. The research team found
calibration of the EM38 challenging to learn, but easy to implement. Conversely, Veris
calibration was relatively simple, but cumbersome and time consuming to implement.
Considering each sensor’s strengths and weaknesses, this study found the EM38 to be easier to
operate.

4.3 Accuracy Consistency and Utility: Given that accuracy, consistency, and utility are related
and largely interdependent concepts, the project investigated all three concurrently. The
backbone of this component of the study includes the global and local correlation analyses
performed on spatial data for each field that examine spatial relationships between mapped
layers and measured soil properties.

4.3.1 Global Correlation: The project measured correlations between all available layers of
mapped data for each study field. Technicians mapped each study field twice over the course of
the project yielding nearly 20 mapped EC layers for each sensor. There were a few instances
where mapped EC layers were omitted from analysis due to accuracy concerns. The study
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found correlations between layers of mapped EC data to be almost universally significant and
strong. The average Pearson correlation value (p<0.05) between EC layers was 0.69, indicating a
large strength of association between the variables. The research team further examined
mapped EC layers by assessing their performance over time and by profile depth. Table 1 shows
average correlation values between mapped EC layers according to time, depth, and sensor.
Notable observations regarding relationships by depth, time, and sensor are discussed in the
following sections.

4.3.1.1 EC by Profile Depth: The analysis showed extremely strong correlations between deep
and shallow EM38 EC measurements mapped at one time, with an average Pearson correlation
of 0.93. Veris readings mapped at one time also had a very high average Pearson correlation of
0.81. When examined across time, a similar pattern is evident where EM38 shallow and deep
correlations are slightly stronger than Veris shallow and deep correlations. Finally, deep EC
correlations across sensors averaged 0.66 and shallow correlations averaged 0.65. This analysis
demonstrates that relationships between shallow and deep EC readings are extremely strong,
although slightly stronger for the EM38 than for the Veris. Ultimately, the study found little
difference between shallow and deep EC readings from either sensor and that either would be
effective for understanding soil variability.

4.3.1.2 EC by Time: The project found that the EM38 demonstrated stronger spatial
relationships than the Veris among EC maps gathered at separate times in the same location.
Correlation analysis of EC data collected at separate times yielded an average Pearson value of
0.76 for EM38 data, and 0.69 for Veris data. This indicates that spatial patterns detected were
slightly more consistent over time for the EM38 data than for the Veris. The relationship
between Veris data and EM38 data collected at different times yields an average correlation
value of 0.60, demonstrating a high level of temporal consistency in mapped EC data regardless
of the sensor used.

4.3.1.3 EM38 vs Veris: The study found the EM38 to be more consistent over time, and across
shallow and deep profile measurements. However, the gap in performance between the two
sensors is small enough and the relationship between EC maps generated strong enough, that
either sensor would be effective considering the parameters of this research project.

4.3.2 All Mapped Data Layers: The global correlation analysis also gauged relations between all
layers of mapped data acquired for each study field. Table 2 shows the percentage of instances
in which each pair of mapped variables resulted in a correlation that was both significant
(p<0.05) and strong (Pearson>0.4). The project found a highly variable network of relationships
among mapped data layers with results at times fluctuating significantly from one field to
another. Notable trends observed in the cases of pH and OM data, elevation data, and yield
data are discussed below.

4.3.2.1 pH and OM: The study found that correlation between mapped EC (Veris or EM38) and
pH and OM data mapped by the Veris was rare and weak, with acceptable correlations found in
only 7/90 instances for pH and only 3/87 instances for OM. Thus, mapped EC data could not
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explain variability in pH and OM as mapped by the Veris, nor predict spatial patterns of those
variables in soil.

4.3.2.2 Elevation: The analysis found that mapped elevation correlated with mapped EC data in
42% of instances, almost all of which were negative. EM38 EC data correlated strongly with
elevation in 63% of instances, while Veris EC data did so in only 24% of instances. These results
indicate a possible inverse relationship between EC measurements and elevation, likely
reflecting the relationship between elevation and soil texture in many locations. The EM38 data
exhibited this trend with greater strength and consistency than the Veris data.

4.3.2.3 Yield: The analysis showed a great deal of variability in relationships between yield and
other data layers. As an aggregate, yield correlated with EC data in roughly 20% of instances.
This fluctuated significantly by year, however, with instances of correlation in excess of 30% for
2010 and 2013 yield data and as low as 0% across the board for 2012 yield data. This shows
how variable yield patterns can be from year to year. In fact, yield maps from various years only
had strong correlations to one another in 10% of instances project-wide. Elevation correlated
strongly with yield data in 26% of instances. This places significant limits on the capability of soil
sensor or elevation data to predict grain yield in a given field in a given year. Although
relationships between yield and other data were rare, both EC and elevation correlated to
specific yield maps more often than other yield maps from the same field. This indicates that
these data layers may be more effective predictors of grain yield than historic yield data.

4.3.2 Local Correlation: The study used correlation analysis to compare mapped sensor data to
measured soil properties. Table 3 shows the frequency of correlation between mapped EC data
and measured soil data by identifying significant (p>0.05) and strong (Pearson>0.4) correlation
instances.

The researchers found relationships between mapped and measured data to be highly variable,
over both location and time. The strength and frequency of correlations between mapped data
and measured clay content and moisture indicate a significant relationship between those
variables. This analysis suggests that correlations for most other variables were too few to
render reliable conclusions for practical and operational purposes.

The study found a relationship between mapped EC data and soil texture (especially clay), with
strong and significant correlations in 25% of instances. Correlation with soil moisture occurred
slightly less often at around 20% of instances. There was a weak and rare relationship between
mapped EC and measured pH, EC, and OM in the soil. With the exception of sulfur, mapped EC
data correlated with measured soil macronutrients (NPKS) in very few circumstances. Sulfur
correlated with EC in the range of 25% of instances.

4.3.2.1 Challenges: The intention of this analysis is to give a sense of the coarse accuracy of the
soil sensors. The lack of on point data collection, particularly in the case of the local data, may
place limits on the strength of this analysis. The strength of the correlations that do exist,
however, supports the argument that Veris and EM38 EC maps are effective predictors of clay
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content and soil moisture. This trial is better designed to examine accuracy of EC data than it is
OM and pH data. EC data has a 60ft spatial range and does not need to be measured on point
to be considered accurate. Whereas OM and pH (as well as NPKS) must be mapped at a higher
resolution to effectively assess accuracy.

4.2 Objective 2: Determine relationships between soil properties, soil moisture availability,
and crop vyields for identified soil management zones. The study addresses most of the
elements of this objective in other sections of the report. The relationships between soil
properties, mapped variables and crop yields are closely examined in section 4.1. Performance
of identified soil management zones in the context of both productivity and response to
nitrogen are discussed at length in section 4.4.

The study used soil samples to examine the soil properties of the management zones created.
This analysis found that soil properties tied to management zones closely mirrored the results
of the correlation analysis described in the summary of objective 1. Management zones built
using EC, for example, tended to contain soil with different soil moisture and texture properties
for each zone. The soil management zones used in this study did not, however, effectively
differentiate soil nutrient properties.

4.3 Objective 3: Identify and evaluate protocols to delineate soil management zones based on
multiple sources of information. The project focused on two elements in developing protocols
for zone delineation: 1) Which data sources to use, and 2) How to effectively use these data to
create zones. PCA identified key data layers for zone delineation and cluster analysis objectively
defined zones.

4.3.1 Principal Component Analysis: The research analysts ran a PCA for each of the 10 study
fields, incorporating all data layers available for each field. Input variables for the PCA process
therefore differed from field to field due to subtle differences in data collected in each field.
PCA results were quite similar for all 10 fields. The EC variable loaded strongly on the first factor
in all instances, indicating that EC accounts for the most unique variability among the data
layers collected and is a key variable. The specific variables loading on the second factor
fluctuated from field to field, but most often yield data was the next most significant layer
following EC in the PCA process. The other notable result of the field by field PCA procedure
was that OM data occasionally loaded onto the same factor as yield. This indicates a
relationship between the two variables where they tend to account for the same variability in
some fields. Ultimately the PCA process objectively identified two key data layers, EC and yield,
for zone delineation.

4.3.2 Cluster Analysis: The study used cluster analysis to objectively divide input data into
management zones. Cluster analysis groups data into clusters that have similar properties. The
process objectively determines into which zone each datum belongs and suggests an ideal
number of zones to create. This zone delineation strategy is specific to each individual field,
while maintaining the rigor of an objective and repeatable process. There are a number of
specific protocols that tailor the analysis to the specific data. The researchers, using a trial and
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error strategy, developed an effective protocol for the input data. The study found cluster
analysis effective for creating zones using data that were not normally distributed, such as EC,
or for combining multiple variables. The study did not apply cluster analysis to surface
geography or grid soil sample delineation methods as the input data in those cases were not
raw data. Similarly, cluster analysis was not applied to yield data, as the team instead tested the
common industry practice of using average normalized yield divided into three equal zones.

4.4 Objective 4: Identify and test the top recommended management option that could be
variably managed. The project generated response curves documenting the response of yield
to increasing rates of nitrogen for each zone in all five different methods of zone delineation.
The research team examined these curves to assess the effectiveness of each delineation
method. There are two scenarios that indicate meaningful or useful zones. The first is if the
mean yields of identified zones differ significantly. The second is if crop yield response to
nitrogen differs for each zone. The five different zone delineation methods tested were surface
geography, grid soil sampling, historic yield, EC and a composite of yield and EC.

4.4.1 Yield Productivity of Delineated Zones: The study had reasonable success identifying
zones that yielded differently. All five delineation methods differentiated at least two zones
whose yields were significantly different in at least 70% of instances (Figure 1). This suggests
that zones created by all five methods were related to soil properties with real implications for
yield. The composite method (EC and yield) most consistently identified zones that yielded
differently, being the only method that did not fail to differentiate regions of productivity in any
of the research fields. The remaining four delineation methods failed to do so in at least 20% of
cases. The grid soil sample method appeared least successful. Although this method often
differentiated some regions of the field that produced differently, in only 20% of cases all zones
had significant yield differences. The other four methods identified significant yield differences
for all zones in 50% or more of instances. While all five zone delineation methods were
reasonably effective at differentiating productivity, the composite method was most
consistently effective.

4.4.2 Yield Response of Delineated Zones: The study had limited success in identifying zones
with differing yield responses to nitrogen. Among the 50 zone delineations tested over 10
research fields, there was only one instance where the slopes of all the response curves were
statistically different from one another (Figure 2). This instance occurred with the grid soil
sample method. The research team identified statistically different response curve slopes for 2
of 3 zones in 12% of instances. Across all zone delineations tested, 86% of instances had no
statistically significant difference between response curves for different zones. The project
expected to find unique responses to nitrogen in at least those zones that had significantly
different yield means, but this was not the case. Effective yield prediction did not lead to
effective yield response differentiation.

4.4.3 Challenges The research team had a few challenges assessing effectiveness of delineated
zones. One challenge involved selecting nitrogen rates that adhered to what cooperators were
comfortable applying. In some cases, this limited the number and range of rates applied.
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However, the study found that when an ideal number and range of nitrogen rates were applied,
there was still a very low success rate. For fields that fewer rates were applied, yield response
curves were not statistically different even at a coarse level. It stands to reason that any
optimal rates identified in the study would need to lie within a range that a cooperator would
be comfortable with to be useful.

4.5 Conclusion This project had a strong focus on collection and analysis of on-farm data. The
researchers found it easy to gather large quantities of data. Converting that data into tangible
knowledge proved more challenging. Data and analysis must provide information that is
consistently reliable in order to be used for good decision making. The knowledge generated by
this study provides strong guidelines for collection, analysis, and application of spatial on-farm
data. It also places limitations on the on the ways data can facilitate good management
decisions. The implications of the study results are summarized three sections: 1) data and soil
variability, 2) data and yield prediction, and 3) zone delineation and VR management.

4.5.1 Data and Soil Variability: The project was unable to effectively account for the variability
of most soil properties using the data layers collected. Spatial relationships between various
data layers were inconsistent and tended to vary from field to field. Using any one variable to
predict the spatial pattern of another is unlikely to yield consistent or repeatable results. The
study does not recommend using any of the data variables studied to predict variability in soil
properties. Although mapped data such as EC, pH, OM, yield or satellite imagery are relatively
cheap and easily attainable, this study shows that they are not effective predictors of macro-
nutrients (NPKS) in the soil.

Soil EC, however, demonstrated consistent and repeatable relationships to the presence of clay
and soil moisture in the study fields. The project found some differences between Veris and
EM38 performance, but both produced EC maps that effectively predicted location soil texture
and soil moisture. While other variables such as weather or management practices can change
from year to year, EC remains relatively stable over time. Not only did the PCA highlight EC as a
key factor in soil variability, but the correlation analysis showed EC patterns to be highly
consistent over space and stable over time. Additionally, EC is relatively cheap, easy to acquire
and has a longer shelf life than other variables. The research team recommends EC as an
effective tool to better understand soil variability.

4.5.2 Data and Yield Prediction: The study found spatial correlation between yield and most
other study variables to be weak and rare. The study expected to find a relationship between
measured soil properties and grain yield, but did not. The coarse 5-acre grid resolution of
collected soil samples may have limited the study’s ability to detect such relationships. The
higher resolution mapped data offered a limited, if inconsistent, improvement over soil sample
data for yield prediction. Mapped EC performed the best when it came to yield prediction.
However, the results were quite variable from year to year and from field to field. In fact, the
study found yield patterns highly variable from year to year, with yield data layers rarely
strongly correlated to one another.
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There are a number of factors that may account for the limited correlation between yield and
other variables. First, accurate yield data maps are difficult to collect. Limited spatial coverage,
use of multiple combines, calibration errors, variable swath widths, or inconsistent harvest
geography can all obfuscate yield map patterns. Second, spatial variability of yield constraints
other than soil properties, such as localized weather events or non-uniform management
practices can influence yield patterns. Finally, temporal variability in yield patterns themselves
makes grain yield difficult to predict. The yield pattern for a wet year, for example, may vary
significantly from the yield pattern for a dry year.

This led the research team to conclude that accurate and consistent grain yield prediction using
the variables studied is unlikely. The relative, if inconsistent, success of EC for yield prediction
likely lies in the consistency of this variable. The implications of mapped EC may change over
time with variations in weather patterns and crops grown, but the pattern is highly consistent.
Mapped EC is a stable variable that provides a strong base for understanding soil variability.

For these reasons, EC may be effective for understanding soil variability and productivity.
Although mapped EC data could not consistently explain variability in grain yields, adding
context through additional data layers or weather information would likely improve its
performance.

4.5.3 Zone Delineation and VR Management: The project created and tested five unique zone
delineation strategies for each study field. The innovative use of PCA identified EC and yield as
key variables to be used for zone delineation. Considerable effort was expended to ensure that
delineation methods were objective and repeatable, and therefore as universal as possible in
their application to multiple fields. The study analyzed the yield of created zones, paying
particular attention to the mean yield and yield response to nitrogen for each zone. Although
results varied from field to field, strong aggregate conclusions came from the analysis.

The project had reasonable success at identifying zones with statistically different mean yields.
Although all five methods were successful in this regard, the grid soil method was the least
successful, while the yield and EC composite map was the most successful. These results
indicate that the data collected did relate to properties in the soil with implications for yield.
The study showed that mapped data can identify zones of productivity. The project had
expected to encounter a larger gap in the efficacy of delineation methods than the results
showed. For example, there was very little difference in success between the rigorous
composite approach and the rather imprecise surface geography method. Some of the success
of the composite method is likely due to the use of multiple variables — hedging our bets so to
speak. Some of its success also likely comes from the identification of yield and EC as key
variables.

However, the project was largely unsuccessful in identifying zones that had unique responses to
nitrogen. Response curve slopes were only statistically different for all zones identified in one
instance across all the fields and delineation methods tested. This indicates that grain yields in
the zones identified did not respond differently to nitrogen. Therefore, there was no
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statistically unique optimal nitrogen rate identified for each zone. Although meaningful zones
can be identified, it appears unlikely that a consistent and effective nitrogen application
strategy could be developed to manage each zone optimally and uniquely.

4.5.4 Summary: The study determined that variable rate technology requires a variable
approach. Temporal and spatial variability in soil properties, yield, weather and other factors
produce a complex and dynamic system that is difficult to understand, predict and manage.
Additionally, every field is unique and responds differently to various management strategies.
There is no magic formula or universal approach that can consistently identify meaningful and
manageable zones.

The project advises VR practitioners to evaluate zone delineation methods with the on-farm
research design used in this project. This allows for an objective evaluation of any VR
management approach in any field. When developing a VR strategy, design zones using an
objective, and therefore repeatable technique so that results attained are also repeatable. The
project suggests that in most cases, mapped EC would be the most useful data for
understanding the variability of soil properties. Yield data is also an effective variable, but its
efficacy can be limited by data quality and temporal variability in yield patterns. Producers are
advised to take meticulous care to ensure yield data are accurate and dependable.

Finally, the analysis had minimal success identifying unique, optimal nitrogen rates for a
number of strategies in 10 different fields in Alberta. These results challenge the validity and
effectiveness of universal approaches to VR nitrogen management. The dynamic nature of crop
production, temporal variability in weather, difficulties in measuring soil variability, and the
scale at which we can respond to variability all challenge our capacity to manage soil variability
in a meaningful way. More academic work is needed in this area. Until then, it would be difficult
to recommend variable rate nitrogen application as a consistently effective crop management
strategy.

Agriculture Funding Consortium
Revised: May, 2015 Page 17



5 Literature cited

Corwin, D. L. and Plant, R. E. 2005. Applications of apparent soil electrical conductivity in precision
agriculture. Computers and Electronics in Agriculture 46:1-10.

Dang, Y. P., Dalal, R. C., Pringle, M. J., Biggs, A. J. W., Darr, S., Sauer, B., Moss, J., Payne, J. and
Orange, D. 2011. Electromagnetic induction sensing of soil identifies constraints to the crop
yields of north-eastern Australia. Soil Research 49:559-571.

Fridgen, J.J., Kitchen, N.R., Sudduth, K.A., Drummond, S.T., Wiebold, W.J., Fraisse, C.W., 2004.
Management Zone Analyst (MZA): software for sub-field management zone delineation. Agron. J.
96, 100-108.

Geonics Limited, 2015. EM38-MK2: Product Catalogue. Mississauga, Ont., Canada. (Accessed on
December 21, 2015 at http://www.geonics.com/pdfs/downloads/catalogue.pdf)

Kryzanowski, L. and Grant, R. 2003. Landscape influences on nutrient dynamics for a hummocky
field in Alberta. Alberta Soil Science Workshop.

Lamb, D. W., Frazier, P. and Adams, P. 2008. Improving pathways to adoption: Putting the right P's
in precision agriculture. Computers and Electronics in Agriculture 61:4-9.

Taylor, J. A., McBratney, A. B. and Whelan, B. M. 2007. Establishing Management Classes for
Broadacre Agricultural Production. Agron. J. 99:1366-1376.

Triantafilis, J. and Lesch, S. M. 2005. Mapping clay content variation using electromagnetic induction
techniques. Computers and Electronics in Agriculture 46:203-237.

Veris Technologies, Inc. 2015. MSP3 Operating Instructions. Salina, KS, USA. (Accessed on December
21, 2015 at http://www.veristech.com/pdf files/Manuals/OM18/0M18-MSP3.pdf)

6 Project team (max % page)
Describe the contribution of each member of the R&D team to the functioning of the
project. Also describe any changes to the team which occurred over the course of the
project.
e Ken Coles, M.Sc. P. Ag. (General Manager and Team Leader)

o Ken provided overall leadership and coordination of the project as a Team
Leader; facilitated the project team for successfully completing the project;
prepared extension material for information and dissemination purposes and
made presentations in producers’ gatherings and conferences

e Dr. Muhammad Akbar, P. Ag. P.Eng. (Research Director & Geomatics/Precision Ag
Scientist)

o Dr. Akbar provided scientific and technical supervision of the project; provided
professional advice and support on the commissioning and operation of soil EC
sensors; assisted in designing and conducting field trials; conducted data
analysis, interpretation and reporting; prepared presentations, interim and final
project reports on the study’s findings and mentored project team in all aspects
of the application of geomatics and spatial and statistical analysis techniques
pertinent to the project

e Lewis Baarda, M.Sc. (GIS Analyst)

o Lewis supervised and coordinated all the field operations and data gathering
activities; conducted data compiling and analysis; assisted in preparation of final
project report; prepared extension material for information and dissemination
purposes and made presentations in producers’ gatherings and conferences
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7 Benefits to the industry (max 1 page; respond to sections a) and b) separately)
a) Describe the impact of the project results on the Alberta or western Canadian
agriculture and food industry (results achieved and potential short-term, medium-term
and long-term outcomes).

The project results increase chances for producer success when developing their own VR
strategies and provide tools to evaluate that strategy. The study produced strong guidelines for
data to use and how to delineate management zones that will improve a producer’s odds of
establishing meaningful and manageable zones. Additionally, the on-farm research model
developed gives any VR practitioner the necessary tools to evaluate the efficacy of VR strategies
on their own fields. The study found that universal strategies for zone delineation were largely
ineffective. In the short-term, this should initiate work into improving existing formulaic
strategies and increasing ability to tailor VR strategies for specific fields.

The study contributed to a better understanding of spatial relationships between different
layers of data collected in a number of fields in Alberta. More research in this area is sorely
needed in the medium-term. The study found many layers, including yield, to be quite variable,
and thus difficult to predict. Unpredictable impacts on crop production, such as weather and its
relationship to in-field variability, need further exploration. Crop production is so dynamic with
so much spatial and temporal variability, that it is unlikely to either predict yield or create
manageable spatial zones consistently with existing techniques. A long-term paradigm shift
where field uniqueness gets more focus and an effective evaluation tool is embedded into VR
strategies would improve the likelihood of developing techniques with measurable benefits.

b) Quantify the potential economic impact of the project results (e.g., cost-benefit analysis,
potential size of market, improvement in efficiency, etc.).

This study begs for close scrutiny of VRT strategies that can cost between $4 and $15/acre for
mapping, zone delineation, and prescription writing. Study results showed the VR strategies
tested mostly unable to identify unique optimal nitrogen rates for zones identified. It is unlikely
that the strategies tested would help a producer reduce nitrogen inputs and associated costs.
Considering VRT consultation costs represent a substantial investment, producers could use the
study template to calculate ROI. The study provides an effective template for unbiased
evaluation of this investment by any producer with VRT capability. Additional costs would
include investment in VR equipment, training and qualified labour.
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8 Contribution to training of highly qualified personnel (max % page)

9

a)

b)

d)

Specify the number of highly qualified personnel (e.g., students, post-doctoral fellows,
technicians, research associates, etc.) who were trained over the course of the project.

Staff from FS and SARDA gained invaluable knowledge regarding the use and capability
of soil EC sensors and about the complexities, advantages and limitation of these
technologies. Over the 3-year study, Farming Smarter employed the following people
who were engaged in many different components of this project:

e About six post-secondary students

e Two interns

e One international student

e Two Masters

e OnePhD

Knowledge transfer/technology transfer/commercialisation (max 1 page)

Describe how the project results were communicated to the scientific community, to
industry stakeholders, and to the general public. Please ensure that you include descriptive
information, such as the date, location, etc. Organise according to the following categories
as applicable:

Scientific publications (e.g., scientific journals); attach copies of any publications as an
appendix to this final report
e No scientific publications to this point
Industry-oriented publications (e.g., agribusiness trade press, popular press, etc.); attach
copies of any publications as an appendix to this final report
e Farming Smarter Magazine, Fall 2014, 16-17
e Farming Smarter Magazine, Spring 2016, 18-19
e Top Crop Manager, Western Edition, March 2016, 20-25
e The Western Producer, March 3, 2016, 75
Scientific presentations (e.g., posters, talks, seminars, workshops, etc.); attach copies of
any presentations as an appendix to this final report
e No scientific presentations to this point
Industry-oriented presentations (e.g., posters, talks, seminars, workshops, etc.); attach
copies of any presentations as an appendix to this final report
° FS AGM; Feb 28, 2013 — Ken Coles presentation (61 attendees)
° Field School; June 25-27, 2013 — Ken Coles presentation (~ 300 attendees)
° SARDA July 10, 2013 - open house (3 attendees)
) FS Conference; Dec 3-4, 2013 - Lewis Baarda presentation (200 attendees, 300
registrants)
° FS AGM; Feb 27, 2014 — Ken Coles VRT presentation (61 attendees)
° Field School; June 24-26, 2014 — Field implementation of on-farm research
protocol was demonstrated (over 250 attendees)
) One-to-one meetings; March - June 2014 — Ken Coles, Lewis Baarda, and Adil
Akbar continued to share knowledge from the VRT project (over 50 attendees)
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FS Conference; Dec 8-9, 2015 — Lewis Baarda full VRT results (288 attendees)
Tactical Farming Conference; Feb 10-11 2016 — Lewis Baarda and Adil Akbar
VRT techniques and results (75 attendees)

FS AGM; Feb 25, 2016 — Lewis Baarda VRT key findings (65 attendees)
Canadian Association of Farm Advisors; Apr 28, 2016 — Lewis Baarda
innovations in precision agriculture (15 attendees)

e) Media activities (e.g., radio, television, internet, etc.)

Project was reported and discussed by Ken Coles in numerous video clips posted
on the Farming Smarter and YouTube websites. Farming Smarter with partner
applied research associations also continued to communicate the findings of this
project in 2015 to the producers and the agricultural industry via extension and
government websites, such as www.farmingsmarter.com, www.agric.gov.ab.ca,
through talks and tours during Farming Smarter Conference, Agronomy Update,
Crop Walks, Diagnostic Field School, as well as from other outlets including
Farming Smarter magazine, Newsletters, social media and the popular press.
Farming Smarter’s staff was also be available for advice upon request on one-to-
one basis.

f) Any commercialisation activities or patents

None

N.B.: Any publications and/or presentations should acknowledge the contribution of each
of the funders of the project, as per the investment agreement.

Agriculture Funding Consortium

Revised: May, 2015

Page 21



Section D: Project resources

1. Provide a detailed listing of all cash revenues to the project and expenditures of project
cash funds in a separate document certified by the organisation’s accountant or other
senior executive officer, as per the investment agreement. Revenues should be identified
by funder, if applicable. Expenditures should be classified into the following categories:
personnel; travel; capital assets; supplies; communication, dissemination and linkage (CDL);
and overhead (if applicable).

2. Provide a justification of project expenditures and discuss any major variance (i.e., + 10%)
from the budget approved by the funder(s).

3. Resources:
Provide a list of all external cash and in-kind resources which were contributed to the

project.
Total resources contributed to the project
Source Amount Percentage of total project
cost
Agriculture Funding Consortium 172550 %
Other government sources: Cash 61567 %
Other government sources: In-kind 5075 %
Industry: Cash 30728 %
Industry: In-kind 76892 %
Total Project Cost 346842 100%
External resources (additional rows may be added if necessary)
Government sources
Name (no abbreviations unless stated in Section A3) Amount cash Amount in-kind
Alberta Agriculture 5075
Alberta Opportunity Fund 43096
Municipalities of Alberta 18469
Industry sources
Name (no abbreviations unless stated in Section A3) Amount cash Amount in-kind
A&L Laboratories 30000
Veris 9000
Alberta Canola Producers 15000
Alberta Barley Commission 7756
Producer Co-operators 22891
Precision Ag Consulting Companies 15000
Capital .
Year Source Type | Personnel | Travel Assets Supplies | CDL* | Overhead Totallyear
ACPC Cash 15000 15000
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2012 Cash
Gov’t In-
kind
Cash
Industry In-
kind
15000 15000
Total Year 1
2 ACPC Cash | 29398 1924 1497 3849 8329 44997
2013 Cash | 10385 680 529 1360 7064 20018
Gov’t In- 1650 1650
kind
Cash 5188 340 264 679 3529 10000
Industry In- 10500 14500 25000
kind
55471 2944 2290 7538 33422 101665
Total Year 2
3 ACPC Cash | 30133 1972 1535 3945 18813 56398
2014 Cash | 10644 697 542 1394 7241 20518
Gov’t In- 1691 1691
kind
Cash 5318 348 271 696 3617 10250
Industry In- 10763 14863 25626
kind
Total Year 3 56858 3017 2348 7726 44534 114483
4 ACPC Cash | 30887 2022 1573 4044 17629 56155
2015 Cash | 10911 714 556 1428 7422 21031
Gov’t In- 1734 1734
kind
Cash 5451 357 278 714 3708 10508
Industry In- 11032 15234 26266
kind
Total Year 4 58281 3093 2407 6186 45727 115694
170610 9054 7045 21450 138683 346842
Grand Total
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Section E: Research Team Signatures and Authorised Representative’s
Approval

The Principal Investigator and an authorised representative from the Principal Investigator’s
organisation of employment MUST sign this form.

Research team members and an authorised representative from their organisation(s) of
employment MUST also sign this form.

By signing as an authorised representative of the Principal Investigator’s employing
organisation and/or the research team member’s(s’) employing organisation(s), the
undersigned hereby acknowledge submission of the information contained in this final report
to the funder(s).

Principal Investigator

Principal Investigator

Name: Title/Organisation:
Ken Coles, M.Sc. P.Ag General Manager/Farming Smarter
Association, Lethbridge
Signature: Date:
2016-06-03
€ s _{/,1. ( p)

Principal Investigator’s Authorised Representative’s Approval

Name: Title/Organisation:

Signature: Date:
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Research Team Members (add more tables as needed)

1. Team Member

Name:
Muhammad (Adil) Akbar, Ph.D., P.Ag., P.Eng.

Title/Organisation:
Research Director/ Farming Smarter
Association, Lethbridge

Signature: Date:
M’ 2016-06-03
Team Member’s Authorised Representative’s Approval

Name:

Title/Organisation:

Signature:

Date:

2. Team Member

Name:
Lewis Baarda, M.Sc.

Title/Organisation:
GIS Analyst/ Farming Smarter Association,

Lethbridge
Signature: _ )~ %/ Date:
- ,
Team Member’s Authorised Representative’s Approval

Name:

Title/Organisation:

Signature:

Date:

3. Team Member

Name:
Vance Yaremko

Title/Organisation:
Manager/ SARDA, Falher

.

Signature:

Date: 2016-06-16

Team Member’s Authorised Representative’s

Approval

Name:

Title/Organisation:

Signature:

Date:
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Section F: Suggested reviewers for the final report

Provide the names and contact information of four potential reviewers for this final report. The
suggested reviewers should not be current collaborators. The Agriculture Funding Consortium
reserves the right to choose other reviewers. Under Section 34 of the Freedom of Information
and Protection Act (FOIP) reviewers must be aware that their information is being collected and
used for the purpose of the external review.

Reviewer #1
Name:
Position:
Institution:
Address:

Phone Number:
Fax Number:
Email Address:
Reviewer #2
Name:
Position:
Institution:
Address:

Phone Number:
Fax Number:
Email Address:
Reviewer #3
Name:
Position:
Institution:
Address:

Phone Number:
Fax Number:

Email Address:
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Appendix A: Tables and Figures
Table 1: Average Pearson Correlation Values Between Mapped EC Layers

Table 2: Percentage of Instances in Which Correlations Between Data Layers Were Both
Significant (p<0.05) and Strong (Pearson>0.4).

Table 3: Frequency and Percentage of Correlations Between Mapped EC Data and Measured
Soil Properties

Figure 1: Success rate and performance comparison of the five zone delineation methods
investigated in this study for identifying within-field zones of different yield potentials

Figure 2: Performance comparison of the five zone delineation methods with respect of the
success rate for showing yield response to nitrogen fertilizer
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Table 1: Average Pearson Correlation Values Between Mapped EC Layers

Time 1

Time 2

Table 2: Percentage of Instances in Which Correlations Between Data Layers Were Both
Significant (p<0.05) and Strong (Pearson>0.4)

EM38
Shallow

Time 1 Time 2

EM38 EM38 Veris Veris EM38 EM38 Veris Veris

Deep Shallow Deep Shallow Deep Shallow Deep  Shallow
EM38 Deep 0.93 0.64 0.60 0.80 0.77 0.61 0.56
4 0.93 0.67 0.67 0.74 0.73 0.63 0.60
Shallow
Veris Deep | 0.64 0.67 0.82 0.61 0.60 0.65 0.66
Veris 0.60 0.67 0.82 0.56 0.61 0.69 0.76
Shallow
EM38 Deep | 0.80 0.74 0.61 0.56 0.93 0.66 0.53
EM38 0.77 0.73 0.60 0.61 0.93 0.69 0.64
Shallow
VerisDeep | 0.61 0.63 0.65 0.69 0.66 0.69 0.81
Veris 0.56 0.60 0.66 0.76 0.53 0.64 0.81
Shallow

Veris

EM38 EC

Deep

Veris
EC

Shallow Deep

pH

oM

Elevation

Yield
2010

Yield
2011

Yield
2012

Yield
2013

Yield
2014

Total
Yield

EM38

0,
Shallow 86%

EM38
Deep

Veris EC
Shallow

Veris EC
Deep

pH

oM

97% 94%

100% 90%

100%

97%

90%

100%

100%

5%

6%

11%

8%

29%

0%

4%

6%

4%

11%

17%

63%

64%

25%

24%

13%

15%

29%

17%

33%

44%

20%

0%

17%

33%

0%

14%

25%

25%

0%

0%

0%

0%

0%

11%

31%

22%

38%

21%

38%

0%

10%

11%

14%

40%

43%

11%

19%

14%

21%

21%

24%

9%

Elevation

Yield 2010

Yield 2011

Yield 2012

Yield 2013

Yield 2014

Total Yield

25%

50%

0%

0%

50%

25%

33%

0%

0%

0%

40%

50%

0%

0%

0%

26%

10%
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Table 3: Frequency and Percentage of Correlations Between Mapped EC Data and Measured
Soil Properties

. ¢ s £ E .
EC Sensor l;r:;:: Statistics g E = fg pre] g < jgo '§ g %
3 = g & 7
EM38 Deep Correlations 11 9 9 7 4 5 5 2 1 1 10
Percentage | 29% 24% 24% 18% 11% 13% 13% 5% 3% 3% 26%
Shallow Correlations 10 8 8 9 5 4 4 3 0 2 10
Percentage | 26% 21% 21% 24% 13% 11% 11% 8% 0% 5% 26%
Veris Deep Correlations 9 9 9 6 8 2 5 2 1 4 9
Percentage | 24% 24% 24% 16% 21% 5% 13% 5% 3% 11%  24%
Shallow Correlations 9 6 6 7 8 2 5 1 1 3 9
Percentage | 24% 16% 16% 18% 21% 5% 13% 3% 3% 8% 24%

1
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M Complete success

(all zones yielded differently)
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Figure 1: Success rate and performance comparison of the five zone delineation methods
investigated in this study for identifying within-field zones of different yield potentials.
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= Complete success B Some success M No success
(all zones yielded differently)  (some zones yielded differently)  (no zones yielded differently)
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Figure 2. Performance comparison of the five zone delineation methods with respect of the
success rate for showing yield response to nitrogen fertilizer.
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Appendix B: Publications

1. Farming Smarter Magazine, Fall 2014, 16-17

2. Farming Smarter Magazine, Spring 2016, 18-19

3. Top Crop Manager, Western Edition, March 2016, 20-25
4. The Western Producer, March 3, 2016, 75
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Growing New Ideas

Keep on-farm trials simple and focused

ed is the key

Rand

n and replica

feads a sandbox discussion at the Farming <

r Field School.  moie

W

he belief that a test strip, is a test

strip, is a test strip isn't necessarily

the proper way to approach doing
your own on-farm trials to determine if a
new product or a new treatment is making
a difference according to Ken Coles, general
manager with Farming Smarter.

Yes, admittedly even a basic test plot or
check strip is of more value than doing noth-
ing, says Coles, but at the same time, with just
a bit more planning, farmers can develop on-
farm trials that produce meaningful results.

Farmers, interested in using new products
or applying new treatment rates have long
heard the advice from extension specialists
“leave a test strip.”

“And the general advice is still valid,” says
Coles, “But leaving a single drill or sprayer
width strip down the field, for example, may
not provide that much useful information.
‘The same goes with dividing a field in half and

Agriculture Funding Consortium
Revised: May, 2015

providing the treatment on one-half and not
the other. It might give you some indication
of whether a treatment was effective, but it
also leaves room for error”

Farming Smarter made a point of discuss-
ing the pros and cons of on-farm trials during
its annual Field School in June. The applied
research organization created three different
sandbox scenarios that showed varying soil
types and topographical conditions com-
monly found in cropland.

Coles, Lewis Baarda, Farming Smarter
precision ag specialist and Dr. Adil Akbar,
Farming Smarter research director worked
with small groups of producers at each station
and explored scenarios with producers. "If
you had a field with these varying conditions,
how would you plan your on-farm trials?”

HOMOGENOUS AREAS
“And it 1s going to be different for every field,”

GROWING NEW IDEAS

says Coles. "One of the important things you
do as your planning is to select a homogenous
area of the field to conduct the on-farm trial”

For example, a field with a large low
lying, saline area here, an area of sandy soil
there and an area of windblown hill top
there, plan the trial so plots or test strips
are within one of those zones — a relatively
homogeneous area,

KEEP IT SIMPLE

All three Farming Smarter extensions special-
ists emphasized three key elements when
planning on-farm trials — keep it relatively
simple and layout plots so they are random
and replicated.

“Whether it is an on-farm trial or formal
research, often the challenge is to keep it sim-
ple,” says Coles. “Take a step back. Be focused
and clear on the question you want to answer

with this on-farm trial and don’t complicate it
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by trying te do too m answer too

1y things

many questions — from your test strips.”

He also urges producers to use a
increments when measuring different treat-
ments, If, for example, 3 producer conducts a
trial to determine an optimum fertilizer rate,
Coles doesn't recommend having a test plot
thati

conventional rate. He considers it too small an

s only 10 pounds heavier than the farmer’s

increase to produce statistically relevant results.
“Again if youre looking at fertilizer rates,
have one plot that is the conventional 100 per

cent rate, b

then put in a plot that is a 50 per

cent lower rate and another that is 50 per cent

higher rate in the test strip

says Coles. "It is
going to give you a miuch better ing i

which treatment is the optimum rate

Random and replic

ed are conc epls farm

ed for an-f

ven't commonly

als, savs Baarda, “They think about “"'ki“& a

machine width strip treatment down the field

or spli ing a field in kalf, but both of those
approaches leaves too much room for error,”
he says, “In both cases you'd have to ask il any

difference you saw in yield, for example, is due

“Whether it's an

on-farm trial or

formal research,

often the challenge

is to keep it simple.”
— Ken Coles

to treatment applied or is it due to variations
in the field.

It takes some planning, but using the fertil-

izer rate example, select an area of the field that

is relatively consistent — homogenous — and

make at least three replicated strips at least a

drill width wide and within each strip have
a one plot at the standard 100 per cent rate,
another at the 50 per cent less rate, and another
at the 50 per cent higher.

To create the randomness, in the next strip

alter the order of the treatment so perhaps the
first plot is 50 per cent less, the next is 50 per

cent higher and the third is the 100 per cent

stand; And in

of the various treatments again.

' ',|||r|.| -\lTi',|. u,:Lcl !llL' Lll'lll‘l'

“So you are laying out your |::|ul- in an area
of the field that has relatively similar condi-
tions,” says Coles, “But with three test strips,
you replicate those treatments and then by
staggering the treatments within the test strips

you create the randomness. With today’s preci-

ston farm technology, it is relatively easy to lay
out the treatments and to measure the results
at harvest.”

Whether evaluating a new variety, a new
herbicide product or a different fertilizer rate,
any yield difference that stands out through
those replicated treatments should be a solid
figuire.

“It takes some planning and preparation

ahead of time,” says Baarda, “You have ro select
the area, plan the layout and plan how you will
collect the data, You have to expect a certain
amount of sacrifice in the process — it is going
to take time and, depending on treatments, it
might affect yvield, but producers can have con-

fidence in the results from a |||<|||4'|]5- |.‘|.|r.:1e'd

and measured
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n-farm Data

Requires Scrutiny

BY LEWIS BAARDA

nderstanding land is a big component

of farming. What better way to under-

stand your land than to interact with

it. To feel it, to dig holes in it, to scrutinize its

performance. There is something to be said

for rolling up your sleeves and turning a hand-
ful of soil through your fingers.

Recent innovations provide farmers with

a new set of tools to understand land. Geo-

referenced yield maps, aerial imagery and

soil sensors offer a cost effective alternative

to rigorous grid soil sampling. These layers

of information collect data at a high density
(as many as 50,000 data points in 160 acres of
land}. This density allows these layers of data
to account for variability in a field at a scale
that traditional grid soil sampling cannot
approach. With all this data, however, comes
the challenge of gleaning knowledge that can
help guide decisions at the farm level

Farming Smarter waded into the world of
big data three years ago when it began a study
on suil sensors and variable rate technology.
The study focussed on soil sensors, specifi-
cally those measuring soil electrical conduc-
tivity (EC), the Veris and EM
gathered a number of additional layers of
data for the 10 fields analyzed including serial
imagery, yield maps and soil samples.

. The team

Large datasets must be filtered. Just
because data are available and accurate
duesn’t mean they should be used to guide
management in the field. Data must be taken

in the context of the information it can

divulge. Yield data, for example, identifies the
productivity of various regions of a field. This
may imply something about the svil proper-
ties in these regions, but it dves not directly
tell us how much nitrogen or clay is present
in the region. For this, an inference must be
made using available data and knowledge.
‘The primary objectives of the study were
to ascertain what meaningful information can
be gleaned from all the data collected and to
determine if the information vbtained is use-

ful to make effective management decisions,
To achieve this, available data layers were vet-
ted to identify those that best accounted for
spatial variability among the fields studied
Additionally, mapped data layers were com-
pared to measured data from soil samples to
determine if relationships to soil properties
were present. This information guided selec-
tion of data used to delineate zones.

The study tested five different methods
of zone delineation, each based on different
input data layers. A number of different data

layers were found to be successful at identify-
ing zones that yielded significantly differently.
fields stadied, the del
of zones using a combination of EC and yield

Across the IC ineation

data was the most effective in this regard
This indicates that mapped field data can
effectiv

y identify zones with different soil
properties

However, identifying a unique optimal
nitrogen rate for each of these zones proved
to be more ch

allenging, With very few excep

tions, the study found that the yield response
to nitrogen did not tend to differ significantly
from one zone to another.

‘These results indicate that while the data
gathered for the study could be used to iden-
tify zones of productivity, it was a challenge
to identify unique optimal rates for each zone.
So while the study was able to use available data
to better understand soil and yield variability,

it had very limited success in outlining a clear
£

One big challenge with mapped data is
that every field is different. Data layers may
have different implications from one ficld
to another. And while there may not be a
universal strategy for identifying and man
aging zones, every strategy can be tested
using deliberate on farm research, The best

way to use data to understand land is to

roll up you sleeves and reach into the data
stream, Feel it, test it and scrutinize its per

response to this i

formance. =
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MAPPING VARIABILITY

An on-farm study looks at soil sensor data for identifying variable rate management zones.

by Carolyn King
ariable rate nitrogen applications have the potential
to save money and improve crop yields. But what is
the best way to come up with variable rate manage-
ment zones that provide economic benefits to the
farmer? Could soil sensor maps be a practical data source for
identifying meaningful management zones? Those are some of
the questions Alberta researchers are answering through a major
on-farm precision agriculture study.

The idea for this study was sparked a few years ago when Ken
Coales, general manager of Farming Smarter, saw some electri-
cal conductivity (EC) sensors at a precision agriculture confer-
ence. He was intrigued by the possibility of using these sensors
as an alternative to grid soil sampling for mapping in-field soil
variability, “The idea is that we can't do grid soil sampling to
the level of accuracy needed to manage variable rate inputs ef-
fectively, plus soil sampling is expensive. So if we can run a soil
sensor over a field and get the same or better informarion, then
maybe there is value in it,” he says.

Lewis Baarda, GIS analyst with Farming Smarter, compares
the two approaches. He explains that a grid soil sampling system
with one sample every five acres would provide 32 data points for
a quarter section, and the lab analysis for nitrogen, phosphorus,
potassium and sulphur would cost about $1,600. An EC sensor
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service could produce an EC map of a quarter section with about
50,000 data points for a cost of about $880, EC data tend to be
good at predicting soil texture and soil moisture content.

But Coles wanted to do more than compare EC sensor maps
and grid seil sampling maps for creating management zones; he
wanted to evaluate if those zones were actually meaningful and
useful for variable rate management. He says, “Creating manage-
ment zones based on soil information and then creating a pre-
scription map is not that hard. The challenging part is verifying
whether your variable rate management is actually paying for
itself. That is really what I wanted to do with this study."

Coles also wanted to do the study as on-farm research, which
added another level of variability. He notes, “Just finding the
right co-operators to work with is challenging, and even when
we have the right peaple, we still have human error issues or
lack of priority issues. So, not only are we going into a complex
environment where we have no control over the variables, but
we are literally studying variability and we also have human and
equipment and scale variability”

Starting in 2012, he teamed up with Baarda and Muhammad
szove: The researchers hooked together the Veris MSP3 and

EM38-MK2, pulling the two soil sensors across each field at the
same time to compare the data.
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(Adil} Akbar, precision agriculture spe-
cialist and research director with Farm-
ing Smarter, to conduct the study on
10 Farm ficlds. The fields are located in
southern Alberta, the Drumheller area
and the Peace Region (in co-operation
with the Smoky Applied Research and
Demonstration Association).

Because of the study’s complex ob-
jectives, quite a few steps were required
in the data collection and analyses for
each feld, including: conducting soil
sensor mapping and grid scil sampling;
determining how strongly the EC maps
matched up with the zoil sample data,
yield maps and other data sources; delin-
cating field zones based on these differ-
ent data sources; conducting a nitrogen
fertilizer ratefyield response trial; deter-
mining which zone map best predicted
yield variability across the field; and
determining which zone map provided
the best basis for variable rate nitrogen
applications.

With funding from Alberta’s Agri-
cultural Imitiatives Program, Farming
Smarter was able to purchase twoe EC
sensors: the EM38-MK2 and the Veris
MSP2, The researchers hooked together
the two sensors and pulled them across
vach field, using Farming Smarter’s on-
board RTX-DGPS sensor for georeferenc-
ing and elevation recording,

“The EM38 has heen arnund for a long
time; they used to use it to map salinity
and it's fjuite effective for that,” Coles
says. The EM38 does not require direct
contact with the soil to take EC readings.
It is pulled over the field’s surface and
takes measurements every few seconds.
It can measure EC at depths of 0.75 and
L5 metres at the same time,

The study compared several dota layers, including electical conductivity (EC) dota
from soll sensors, for understanding in-field variakility.

The Veris organic matter sensor mea-
sures the soil'’s aptical reflectance, basical-
Iy how dark or light the soil is, and those
reflectance data are converted to organic
matter content by Veris, The pH sensor di-
rectly measures sofl pH using an on-the-go
chemical test, taking a soil sample, testing
it and then taking the next sample, while
the Verls moves across the field, The pH
and organic matter sensors provide fewer
data points per field than the 50,000 peints
generated by the EC sensors,

Soil sampling followed a five-acre grid,
with 32 samples for each 160-acre field. The
samp]czi were analyztd far n]'lm]_.',l:'n1 phms-
phorus, potassium, sulphur, organic matter,
pH, EC, maisture content and texture,

The co-operators provided yield data
collected by their
monitors, Baarda notes, “Although the

on-combine  yicld

standard practice is o use at least three

The research team scanned each field twice with the

two EC sensors, usually in the spring and the fall

The Veris M3P3 is a mobile sensor
platform with three sensors: EC, pH and
nrganic matter. Its EC sensor requires snil
contact so it has coulters that maintain seil
contact as the equipment is pulled across
the field. Like the EM38, this sensor mea-
sures EC at both 0.75 and 1.5 metres deep.

The research team scanned cach field
twice with the two EC sensors, usually in
the spring and the fall.
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to five years of yield maps to define
praductivity zones, in maost cases it was a
challenge to gather even three years with
good spatial coverage.”

Coles adds, "Finding good yield map
data is really difficult. There are many rea-
sons for that. One reason is that people
don't save the data; they don't take the
time to transfer it to their computer. An-
other reason may be that they have two or

three combines on the field at the same
time, which makes it challenging to stitch
the data together, Or it could be they didn't
calibrate it properly.”

For each field, the researchers cre-
ated zone maps using five different data
sources: EC sensor data; historical yield
data from the co-operator; grid soil sam-
ple data; a visual depiction of the fields
main terrain features; and a compasite of
vield and EC sensor data. This compasite
method was included because an objec-
tive procedure called principal component
analysis identified EC and yield as the two
variables, among all the data collected,
that best accounted for spatial variability
in the 10 fields.

At each field, they conducted a repli-
cated, randomized nitrogen fertilizer ratef
vield response trial. The nitrogen fertil-
izer was applied at seeding, The specific
nitrogen rates used in each tral depended
in part on what the cooperating farmer
wanted to do; usually fewer than five rates
were used, The researchers measured the
variations in grain yield response and de-
termined the nitrogen ratefyield response
CUrves,

Mext, they laid vach zone map over
the yield response results and determined
which of the five zone delineation meth-
ods worked best for predicting in-field
vield variations and for Prudi::ting FOTES
for variable rate nitrogen applications.

Highlights of results

Az you can probably imagine, the study in-
volved huge amounts of data that required
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complex analysis. Akbar, Baarda and Coles
are currently finalizing the study’s report,
and they hope to also publish some scien-
tific papers,

In terms of the performance of the EC
sensors, Baarda says, “Our EC data from
the Ve

sistent with cach other. Also, the spring

ris and the EM38 were highly con-

EC map was always highly consistent with
the fall EC map. We could almost take one
EC layer and say that’s what the EC map is
[for the field] because those patterns don’t
change over time and they don't change
between the sensors” The researchers
also found that the EM38 was easier and
less costly to use than the Veris for
mapping EC,

Overall, the EC sensor data tended to
be strongly correlated with the soil sample
data for sand and clay content and soil
moisture content, although the strength of
the correlations varied from field to field.
So, EC sensor maps can give farmers a
better understanding of the soil vartability
in their fields.

However, the EC sensor maps didn’t
necessarily predict the spatial patterns in
some of the other soil sample data. like
nitrogen {N), phosphorus (P), potassium
(K), sulphur (S}, pH and organic matter.
s could be
a factor in the weakness of some of these

According to Baarda, scale is:

S

correlations,

“We're comparing about 30 data points
from scil sampling to about 50,000 from
the EC sensors. The [weaker] relationships
can get obscured because of the different
scales of the datasets. So, even though we
don’t sec a relationship to N, P, K and §,
we can't necessarily say that those macro-
nutrients don't correlate to EC. But we get
a sense that they probably don't correlate
as strongly as we'd need to make a manage-
ment response to them." So the EC sensor
maps are not a reliable way to directly esti-
mate variable nutrient rates.

The study also showed grain yield could
not be predicted directly from just the EC
sensor maps. The correlations with yield
were weak or did not exist. Various factors
might have contributed to these poor cor-
relations, including the challenges in ob-
taining good yield data.

Another key finding was the surpris-
ing amount of year-to-year variation in
the yield patterns. “I think people have a
sense that yield patterns are more static
than they actually are. Some parts of
those spatial patterns are consistent, but
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statistically those patterns change more
than I would have thought,” Baarda says.
"Sa it’s important to have at least three to
five years of yield data; the more years you
have, the more it helps to balance out the
outlier years.”

The strength of the correlations among
the various other data layers - such as
elevation, yield, soil nutrients, soil texture,
the pH sensor and the organic matter
sensor — also varied from field to field,

Because of the ficld-to-field differences,
the different zone delineation techniques

;iropsc‘et\ce.bayer.calRalil

| .’.L‘nm diand fo

B0

had different levels of success depending
on the field.

For predicting yield potential, the
composite method — pairing up yield and
EC sensor data — was the best of the five
methods for delineating zones. “In 100
per cent of the instances, the composite
method was the most successful in
differentiating  within-held  zones  of
different yield potentials. So the zones
created by pairing EC and yield were
meaningful: they predicted where we
would have high and low productivity

f

\; NS
e “q‘Baycr CropsCA
\ \

derfarks.of Ba

Page 37



based on the information we had before
the growing season,” Baarda explains. "The
other four delineation methods failed in
differentiating any productivity zones in
20 to 30 per cent of the instances and had
varying combinations of complete andfor
partial success in the remaining instances.”

He adds, “Some of the composite meth-
ud’s success is likely due to the use of multi-
ple variables — hedging our bets so to speak.
Some of its success also likely lies in the fact
that we objectively identified yield and EC

as key variables for zone delineation.”

of the delineation methods

were very successful in identifying zones

None

that could be managed differently for
nitrogen in ways that would benefit the
farmers economically.

According to Coles, the next step in
this research would be to add more layers
of data to the analysis, such as remote sens-
ing data from satellites and data from other
in-field sensors.

Some take-home messages

“Our big message is there is no single data

Raxil PRO
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layer that can be guaranteed to tell you
what you need to know te variably man-
age inputs,” Baarda says. He emphasizes
that zone management is a pracess — each
field is unigue and you have to be prepared
to invest some time in understanding the
ficld’s variability and figuring out what
works best for that particular ield.

If you're interested in experimenting
with variable rate applications, Coles rec-
ommends starting with just a few layers
of data.

Baarda thinks an EC sensor map could
be a good option for one of those layers.
“Not only is EC mapping cheaper than
grid soil sampling, but it has a longer
‘shelf life." In our experience, EC doesn't
tend to change over time, so a field could
be mapped for EC once, and in most cir-
cumstances, that data would be relevant
for a number of years” Although the sen-
sors don't provide the data on nutrient
levels that you can get from soil sample
analysis, the sensor maps do indicate vari-
ations in other soil properties, especially
soil texture,

If you want to use your yield monitor
data in identifying management zones,
then try to ensure the reliability of that
data. For instance, be sure to download the
yield data from your combine and save it so
you can accumulate as many years of data
as possible, If you're using twao separate
combines on the same field, then consider
calibrating them in the same way. If you're
calculating the average yield pattern for
a field based on several years of data, ex-
clude any years where the data are skewed
because of some external factor, like hail
damage on half of the field.

And no matter what data layers you
use and what zone delineation method
you test, Coles suggests that your on-farm
study design should include the steps
needed to allow an objective evaluation of
whether or not your approach is actually
helping you economically.

Coles concludes, “There are lots of peo-
ple doing variable rate agriculture but very
few who are effectively testing and verify-
ing the suceess.” He adds, “More academic
work in this area is sorely needed”

The study was funded by the Alberta
Canola Producers Commission, Alberta
Barley and Farming Smarter.
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The most valuable
data layers are those
with the highest
correlation. Shown
here are electrical
conductivity, left,
topography and yield
maps of the same
field. | LewisBAARDA/
TARMING SMARTER T

Information overload: making sense of precision ag data

BY RON LYSENG

WINKIPEG RURIAY

CALGARY — The constantintro-
duction of newer and better data-
collection technology can leave
many precision farmers and con-
sultants scratching their heads.

There's not much point in wast-
ing time or money logging field
data that will never be used, says
Lewis Baarda, a GIS specialist with
Farming Smarter in Lethbridge.

Baarda analyzed various types of
datamaps last year with the goal of
determining which might be the
mostvaluable.

The Farming Smarter team fig-
ured that maps with the highest
correlation to each other held the
best information about what the
soil cando. Maps thatwere way out
of the ballpark probably had little
ornovalue,

“We started with 15 layers of field
data, and that was a real mess,"
Baarda told the recent Tactical
Farming conference in Calgary.

Different coverage, gaps, over-
laps and shifting GPS points all
made the stack of 15 layers even
moreofamess, headded.

They eventually whittled down
the list to four meaningful maps
that had good visual correlations.
The finalists included electrical
conductivity, vield, organic matter
and topography.

Yield maps should theoretically
provide the most valuable infor-
mation, and sometimes they do.
Other times they're worse than
nothing.

“"Yield maps have a strong corre-
lation to the others, butyou can't
always trust them,” Baarda said.

“If your yield monitor isn't quite
perfectwhen the crop is ready to
combine, do you go combining
anyway or do youwaste time fixing
the monitor? It’s not viewed asan
essential part of the combine, and
that'swhythe dataisn’talways reli-
able,

“Organic matteris useful ifthere's
good data, but I'm not sure we can
always trustthe data. Topographyis
asimple one to getwith your GPS.

“EC can provide good informa-
tion, but for us it was areal chal-
lenge to get the EChooked up toa
computerand then hook that com-
puter up to GPS so we could get
everything working together on
the same map. Operationally, that
takes technical expertise that not
everyone has”

The Veris EC mapping trailer has
been on the market for 20 years.
Most agronomists agree electrical
conductivity can be useful, but few
farm supply outlets have a Veris or
Em38. Baarda speculated that the
technical hurdles of getting it all
work together might be the prob-
lem.

However, the struggle to getitto
all work together extends far
beyond ECandyield maps. Baarda

said litle of the data that'sbeencol-
lected over the yearsis everused.
“There's a good reason for that,”
hesaid.
“The software out there is not
user-friendly. It's not flexible. You
spend $8,000 or $10,000 for a

cropscience.bayer.ca/Infinity
A and todle
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monitor inyourcombine and what
do you get? Five functions. It'sa
challenge to do much more than
justlook atmaps. Your smartphone
can let you do that. Integrating
meaningful datais difficult.
“Instead of collecting a pile of

datalayers you can'tuse, I'd urge
farmersto pick justasmall number
of maps their software can handle.
Two or three or four, maximum.
Keep itsimple. If T had to pick just
two, I'd go with yield and EC. If you
pay to have EC data mapped, that

data should be good for five to 10
years."

For more information, contact
Baarda at403-381-5118 or visit
www.farmingsmarter.com.

rolyseng@producer.cont
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